43
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Targeted pH-responsive delivery of rosmarinic acid via phenylboronic acid functionalized mesoporous silica nanoparticles for liver and lung cancer therapy

, , , , , & show all
Pages 541-550 | Received 01 Nov 2023, Accepted 13 May 2024, Published online: 24 May 2024

References

  • Abdelnasir S, Anwar A, Kawish M, Anwar A, Raza M, Siddiqui R, Khan N. 2020. Metronidazole conjugated magnetic nanoparticles loaded with amphotericin B exhibited potent effects against pathogenic Acanthamoeba castellanii belonging to the T4 genotype. AMB Express. 10(1):127. doi:10.1186/s13568-020-01061-z.
  • Akbar N, Kawish M, Jabri T, Khan NA, Shah MR, Siddiqui R. 2021. Enhancing efficacy of existing antibacterials against selected multiple drug resistant bacteria using cinnamic acid-coated magnetic iron oxide and mesoporous silica nanoparticles. Pathog Glob Health. 116(7):438–454. doi:10.1080/20477724.2021.2014235.
  • Akbar N, Kawish M, Khan NA, Shah MR, Alharbi AM, Alfahemi H, Siddiqui R. 2022. Hesperidin-, curcumin-, and amphotericin B-based nano-formulations as potential antibacterials. Antibiotics. 11(5):696. doi:10.3390/antibiotics11050696.
  • Cao J, Gao X, Cheng M, Niu X, Li X, Zhang Y, Liu Y, Wang W, Yuan Z. 2019. Reversible shielding between dual ligands for enhanced tumor accumulation of ZnPc-loaded micelles. Nano Lett. 19(3):1665–1674. doi:10.1021/acs.nanolett.8b04645.
  • Chan MH, Lin HM. 2015. Preparation and identification of multifunctional mesoporous silica nanoparticles for in vitro and in vivo dual-mode imaging, theranostics, and targeted tracking. Biomaterials. 46:149–158. doi:10.1016/j.biomaterials.2014.12.034.
  • Chen H, Kuang Y, Liu R, Chen Z, Jiang B, Sun Z, Chen X, Li C. 2018. Dual-pH-sensitive mesoporous silica nanoparticle-based drug delivery system for tumor-triggered intracellular drug release. J Mater Sci. 53(15):10653–10665. doi:10.1007/s10853-018-2363-8.
  • Chen W, Xie W, Zhao G, Shuai Q. 2023. Efficient pH-responsive nano-drug delivery system based on dynamic boronic acid/ester transformation. Molecules. 28(11):4461. doi:10.3390/molecules28114461.
  • Cheng W, Nie J, Xu L, Liang C, Peng Y, Liu G, Wang T, Mei L, Huang L, Zeng X. 2017. pH-Sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl Mater Interfaces. 9(22):18462–18473. doi:10.1021/acsami.7b02457.
  • Date AA, Nagarsenker MS, Patere S, Dhawan V, Gude R, Hassan P, Aswal V, Steiniger F, Thamm J, Fahr A. 2011. Lecithin-based novel cationic nanocarriers (Leciplex) II: improving therapeutic efficacy of quercetin on oral administration. Mol Pharm. 8(3):716–726. doi:10.1021/mp100305h.
  • Derkacheva O, Sukhov D. 2008. Investigation of lignins by FTIR spectroscopy. Macromolecular Symposia. 265(1):61–68.
  • Elsabahy M, Heo GS, Lim SM, Sun G, Wooley KL. 2015. Polymeric nanostructures for imaging and therapy. Chem Rev. 115(19):10967–11011. doi:10.1021/acs.chemrev.5b00135.
  • Elsabahy M, Wooley KL. 2015. Data mining as a guide for the construction of cross-linked nanoparticles with low immunotoxicity via control of polymer chemistry and supramolecular assembly. Acc Chem Res. 48(6):1620–1630. doi:10.1021/acs.accounts.5b00066.
  • Elshaarani, Tarig, Yu, Haojie, Wang, Li, Ullah, Raja Summe, Haroon, Muhammad, Khan, Rizwan Ullah, Fahad, Shah, Khan, Amin, Nazir, Ahsan, Usman, Muhammad, Naveed, Kaleem-Ur-Rahman, 2018. Synthesis of hydrogel-bearing phenylboronic acid moieties and their applications in glucose sensing and insulin delivery. J Mater Chem B. 6(23):3831–3854. doi:10.1039/c7tb03332j.
  • Ferreira-Gonçalves T, Gaspar MM, Coelho JMP, Marques V, Viana AS, Ascensão L, Carvalho L, Rodrigues CMP, Ferreira HA, Ferreira D, et al. 2022. The role of rosmarinic acid on the bioproduction of gold nanoparticles as part of a photothermal approach for breast cancer treatment. Biomolecules. 12(1):71. doi:10.3390/biom12010071.
  • Fuster MG, Carissimi G, Montalbán MG, Víllora G. 2021. Antitumor activity of rosmarinic acid-loaded silk fibroin nanoparticles on HeLa and MCF-7 cells. Polymers (Basel). 13(18):3169. doi:10.3390/polym13183169.
  • Hakemi P, Ghadi A, Mahjoub S, Zabihi E, Tashakkorian H. 2021. Fabrication of PCL-PEG-PCL nanocarrier for Co-loading of docetaxel/quercetin and assessment of its effect on growth inhibition of human liver cancer (Hep-G2) cell line. International Journal of Nano Dimension. 12(4):355–368.
  • Hei M, Wu H, Fu Y, Xu Y, Zhu W. 2019. Phenylboronic acid functionalized silica nanoparticles with enlarged ordered mesopores for efficient insulin loading and controlled release. J Drug Delivery Sci Technol. 51:320–326. doi:10.1016/j.jddst.2019.03.031.
  • Huang Q, Wang L, Yu H, Ur-Rahman K. 2019. Advances in phenylboronic acid-based closed-loop smart drug delivery system for diabetic therapy. J Control Release. 305:50–64. doi:10.1016/j.jconrel.2019.05.029.
  • Jahan-Abad AJ, Morteza-Zadeh P, Negah SS, Gorji A. 2017. Curcumin attenuates harmful effects of arsenic on neural stem/progenitor cells. Avicenna Journal of Phytomedicine. 7(4):376.
  • Jin B, Liu J, Gao D, Xu Y, He L, Zang Y, Li N, Lin D. 2020. Detailed studies on the anticancer action of rosmarinic acid in human Hep-G2 liver carcinoma cells: evaluating its effects on cellular apoptosis, caspase activation and suppression of cell migration and invasion. Journal of BUON: official Journal of the Balkan Union of Oncology. 25(3):1383–1389. eng.
  • Katara R, Sachdeva S. 2019. Design, characterization, and evaluation of aceclofenac-loaded Eudragit RS 100 nanoparticulate system for ocular delivery. Pharmaceutical Development and Technology. 24(3):368–379.
  • Kawish M, Elhissi A, Jabri T, Muhammad Iqbal K, Zahid H, Shah MR. 2020. Enhancement in oral absorption of ceftriaxone by highly functionalized magnetic iron oxide nanoparticles. Pharmaceutics. 12(6):492. doi:10.3390/pharmaceutics12060492.
  • Kinoh H, Miura Y, Chida T, Liu X, Mizuno K, Fukushima S, Morodomi Y, Nishiyama N, Cabral H, Kataoka K. 2016. Nanomedicines eradicating cancer stem-like cells in vivo by pH-triggered intracellular cooperative action of loaded drugs. ACS Nano. 10(6):5643–5655. doi:10.1021/acsnano.6b00900.
  • Kong Z-L, Kuo H-P, Johnson A, Wu L-C, Chang KLB. 2019. Curcumin-loaded mesoporous silica nanoparticles markedly enhanced cytotoxicity in hepatocellular carcinoma cells. Int J Mol Sci. 20(12):2918. doi:10.3390/ijms20122918.
  • Kundu M, Sadhukhan P, Ghosh N, Chatterjee S, Manna P, Das J, Sil PC. 2019. pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J Adv Res. 18:161–172. doi:10.1016/j.jare.2019.02.036.
  • Lavan DA, McGuire T, Langer R. 2003. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 21(10):1184–1191. doi:10.1038/nbt876.
  • Li L, Zeng Z, Chen Z, Gao R, Pan L, Deng J, Ye X, Zhang J, Zhang S, Mei C, et al. 2020. Microenvironment-triggered degradable hydrogel for imaging diagnosis and combined treatment of intraocular choroidal melanoma. ACS Nano. 14(11):15403–15416. doi:10.1021/acsnano.0c06000.
  • Li S, Hu K, Cao W, Sun Y, Sheng W, Li F, Wu Y, Liang X-J. 2014. pH-responsive biocompatible fluorescent polymer nanoparticles based on phenylboronic acid for intracellular imaging and drug delivery. Nanoscale. 6(22):13701–13709. doi:10.1039/c4nr04054f.
  • Liao XZ, Gao Y, Sun LL, Liu JH, Chen HR, Yu L, Chen ZZ, Chen WH, Lin LZ. 2020. Rosmarinic acid reverses non-small cell lung cancer cisplatin resistance by activating the MAPK signaling pathway. Phytother Res. 34(5):1142–1153. eng. doi:10.1002/ptr.6584.
  • Liu J, Liu Q, Yang C, Sun Y, Zhang Y, Huang P, Zhou J, Liu Q, Chu L, Huang F, et al. 2016. cRGD-modified benzimidazole-based pH-responsive nanoparticles for enhanced tumor targeted doxorubicin delivery. ACS Appl Mater Interfaces. 8(17):10726–10736. doi:10.1021/acsami.6b01501.
  • Liu J, Luo Z, Zhang J, Luo T, Zhou J, Zhao X, Cai K. 2016. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials. 83:51–65. doi:10.1016/j.biomaterials.2016.01.008.
  • Ma Q, Zhao X, Shi A, Wu J. 2021. Bioresponsive functional phenylboronic acid-based delivery system as an emerging platform for diabetic therapy. Int J Nanomedicine. 16(null):297–314. doi:10.2147/IJN.S284357.
  • Meng H, Xue M, Xia T, Zhao Y-L, Tamanoi F, Stoddart JF, Zink JI, Nel AE. 2010. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J Am Chem Soc. 132(36):12690–12697. doi:10.1021/ja104501a.
  • Mohseni M, Gilani K, Mortazavi SA. 2015. Preparation and characterization of rifampin loaded mesoporous silica nanoparticles as a potential system for pulmonary drug delivery. Iranian Journal of Pharmaceutical Research: IJPR. 14(1):27–34. eng.
  • Nakahata M, Mori S, Takashima Y, Hashidzume A, Yamaguchi H, Harada A. 2014. pH-and sugar-responsive gel assemblies based on boronate–catechol interactions. ACS Macro Lett. 3(4):337–340. doi:10.1021/mz500035w.
  • Oliveira L, Bouchmella K, Picco AS, Capeletti LB, Gonçalves KA, Santos J, Kobarg J, Cardoso MB. 2017. Tailored silica nanoparticles surface to increase drug load and enhance bactericidal response. J Braz Chem Soc. 28:1715–1724.
  • Palanikumar L, Al-Hosani S, Kalmouni M, Nguyen VP, Ali L, Pasricha R, Barrera FN, Magzoub M. 2020. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun Biol. 3(1):95. doi:10.1038/s42003-020-0817-4.
  • Pan F, Giovannini G, Zhang S, Altenried S, Zuber F, Chen Q, Boesel LF, Ren Q. 2022. pH-responsive silica nanoparticles for the treatment of skin wound infections. Acta Biomater. 145:172–184. doi:10.1016/j.actbio.2022.04.009.
  • Petros RA, DeSimone JM. 2010. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 9(8):615–627. doi:10.1038/nrd2591.
  • Ralph J, Lapierre C, Boerjan W. 2019. Lignin structure and its engineering. Curr Opin Biotechnol. 56:240–249. doi:10.1016/j.copbio.2019.02.019.
  • Ren J, Zhang Y, Zhang J, Gao H, Liu G, Ma R, An Y, Kong D, Shi L. 2013. pH/sugar dual responsive core-cross-linked PIC micelles for enhanced intracellular protein delivery. Biomacromolecules. 14(10):3434–3443. doi:10.1021/bm4007387.
  • Shi Z, Pu L, Guo Y, Fu Z, Zhao W, Zhu Y, Wu J, Wang F. 2017. Boronic acid-modified magnetic Fe3O4@mTiO2 microspheres for highly sensitive and selective enrichment of n-glycopeptides in amniotic fluid. Sci Rep. 7(1):4603. doi:10.1038/s41598-017-04517-8.
  • Song Y, Zhu P, Xu Z, Chen J. 2020. Dual-responsive dual-drug-loaded bioinspired polydopamine nanospheres as an efficient therapeutic nanoplatform against drug-resistant cancer cells. ACS Appl Bio Mater. 3(9):5730–5740. doi:10.1021/acsabm.0c00512.
  • Su J, Chen F, Cryns VL, Messersmith PB. 2011. Catechol polymers for ph-responsive, targeted drug delivery to cancer cells. J Am Chem Soc. 133(31):11850–11853. doi:10.1021/ja203077x.
  • Torchilin VP. 2014. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 13(11):813–827. doi:10.1038/nrd4333.
  • Volk T, Jähde E, Fortmeyer H, Glüsenkamp K, Rajewsky M. 1993. pH in human tumour xenografts: effect of intravenous administration of glucose. Br J Cancer. 68(3):492–500. doi:10.1038/bjc.1993.375.
  • Wang B, Yuan T, Zha L, Liu Y, Chen W, Zhang C, Bao Y, Dong Q. 2021. Oral delivery of gambogenic acid by functional polydopamine nanoparticles for targeted tumor therapy. Mol Pharm. 18(3):1470–1479. doi:10.1021/acs.molpharmaceut.1c00030.
  • Wang J, Lee JS, Kim D, Zhu L. 2017. Exploration of zinc oxide nanoparticles as a multitarget and multifunctional anticancer nanomedicine. ACS Appl Mater Interfaces. 9(46):39971–39984. doi:10.1021/acsami.7b11219.
  • Wang X, Xia N, Liu L. 2013. Boronic acid-based approach for separation and immobilization of glycoproteins and its application in sensing. Int J Mol Sci. 14(10):20890–20912. doi:10.3390/ijms141020890.
  • Wang Y, Zhang X, Han Y, Cheng C, Li C. 2012. pH-and glucose-sensitive glycopolymer nanoparticles based on phenylboronic acid for triggered release of insulin. Carbohydr Polym. 89(1):124–131. doi:10.1016/j.carbpol.2012.02.060.
  • Wu S-H, Mou C-Y, Lin H-P. 2013. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev. 42(9):3862–3875. doi:10.1039/c3cs35405a.
  • Zhang Y, Cai K, Li C, Guo Q, Chen Q, He X, Liu L, Zhang Y, Lu Y, Chen X, et al. 2018. Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett. 18(3):1908–1915. doi:10.1021/acs.nanolett.7b05263.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.