972
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Objective assessment for open surgical suturing training by finger tracking can discriminate novices from experts

ORCID Icon, , , &
Article: 2198818 | Received 22 Dec 2022, Accepted 30 Mar 2023, Published online: 04 Apr 2023

References

  • Bökkerink GM, Joosten M, Leijte E, et al. Validation of low-cost models for minimal invasive surgery training of congenital diaphragmatic hernia and esophageal atresia. J Pediatr Surg. 2020;56(3):465–8.
  • Hiyoshi Y, Miyamoto Y, Akiyama T, et al. Time trial of dry box laparoscopic surgical training improves laparoscopic surgical skills and surgical outcomes. Asian J Endosc Surg. 2021;14(3):373–378. DOI:10.1111/ases.12871
  • Alaker M, Wynn GR, Arulampalam T. Virtual reality training in laparoscopic surgery: a systematic review & meta-analysis. Int J Surg. 2016;29:85–94.
  • Arts EEA, Leijte E, Witteman BPL, et al. Face, content, and construct validity of the take-home eosim augmented reality laparoscopy simulator for basic laparoscopic tasks. J Laparoendosc Adv Surg Tech A. 2019;29(11):1419–1426.
  • Genovese B, Yin S, Sareh S, et al. Surgical hand tracking in open surgery using a versatile motion sensing system: are we there yet? Am Surg. 2016;82(10):872–875. DOI:10.1177/000313481608201002
  • Higuchi M, Abe T, Hotta K, et al. Development and validation of a porcine organ model for training in essential laparoscopic surgical skills. Int J Urol. 2020;27(10):929–938. DOI:10.1111/iju.14315
  • Keni S, Ilin R, Partridge R, et al. Using automated continuous instrument tracking to benchmark simulated laparoscopic performance and personalize training. J Surg Educ. 2021;78(3):998–1006.
  • Datta V, Mackay S, Mandalia M, et al. The use of electromagnetic motion tracking analysis to objectively measure open surgical skill in the laboratory-based model. J Am Coll Surg. 2001;193(5):479–485.
  • Joosten M, Bökkerink GMJ, Levitt MA, et al. The use of an inanimate simulation model for the correction of an anorectal malformation in the training of colorectal pediatric surgery. Eur J Pediatr Surg. 2021;32(03):287–293. DOI:10.1055/s-0041-1723035
  • Jokinen E, Mikkola TS, Härkki P. Simulator training and residents’ first laparoscopic hysterectomy: a randomized controlled trial. Surg Endosc. 2020;34(11):4874–4882.
  • Kuroki T, Fujioka H. Training for laparoscopic pancreaticoduodenectomy. Surg Today. 2019;49(2):103–107.
  • Ueda K, Kino H, Katayama M, et al. Simulation surgery using 3D 3-layer models for congenital anomaly. Plast Reconstr Surg Glob Open. 2020;8(8):e3072.
  • Gonzalez-Navarro AR, Quiroga-Garza A, Acosta-Luna AS, et al. Comparison of suturing models: the effect on perception of basic surgical skills. BMC Med Educ. 2021;21(1):250. DOI:10.1186/s12909-021-02692-x
  • Pérez-Escamirosa F, Montoya-Alvarez S, Ordorica-Flores RM, et al. Design of a dynamic force measurement system for training and evaluation of suture surgical skills. J Med Syst. 2020;44(10):174. DOI:10.1007/s10916-020-01642-2
  • DeMasi SC, Katsuta E, Takabe K. Live animals for preclinical medical student surgical training. Edorium J Surg. 2016;3(2):24–31.
  • Kite AC, Yacoe M, Rhodes JL. The use of a novel local flap trainer in plastic surgery education. Plast Reconstr Surg Glob Open. 2018;6(6):e1786.
  • Martin JA, Regehr G, Reznick R, et al. Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg. 1997;84(2):273–278. DOI:10.1046/j.1365-2168.1997.02502.x
  • Bonrath EM, Zevin B, Dedy NJ, et al. Error rating tool to identify and analyse technical errors and events in laparoscopic surgery. Br J Surg. 2013;100(8):1080–1088.
  • Temple CLF, Ross DC. A new, validated instrument to evaluate competency in microsurgery: the University of Western Ontario Microsurgical Skills Acquisition/Assessment instrument [outcomes article]. Plast Reconstr Surg. 2011;127(1):215–222.
  • Saggio G, Lazzaro A, Sbernini L, et al. Objective surgical skill assessment: an initial experience by means of a sensory glove paving the way to open surgery simulation? J Surg Educ. 2015;72(5):910–917. DOI:10.1016/j.jsurg.2015.04.023
  • Hillemans V, Verhoeven B, Botden S. Feasibility of tracking in open surgical simulation. Int J Healthc Simul. 2022;1–10. DOI:10.54531/juvj5939
  • Kowalewski KF, Hendrie JD, Schmidt MW, et al. Development and validation of a sensor- and expert model-based training system for laparoscopic surgery: the iSurgeon. Surg Endosc. 2017;31(5):2155–2165. DOI:10.1007/s00464-016-5213-2
  • Nickel F, Kowalewski K-F, Rehberger F, et al. Face validity of the pulsatile organ perfusion trainer for laparoscopic cholecystectomy. Surg Endosc. 2017;31(2):714–722. DOI:10.1007/s00464-016-5025-4
  • Ayodeji ID, Schijven M, Jakimowicz J, et al. Face validation of the Simbionix LAP Mentor virtual reality training module and its applicability in the surgical curriculum. Surg Endosc. 2007;21(9):1641–1649.
  • Ferns J. An app to make a surgeon. BMJ. 2013;346:f3361.
  • Bökkerink GM PediatrickBoxx [Website]. Available from: https://www.pediatrickboxx.com/.
  • EduStitch Available from: https://www.edustitch.com/.
  • Mansoor SM, Våpenstad C, Mårvik R, et al. Construct validity of eoSim - a low-cost and portable laparoscopic simulator. Minim Invasive Ther Allied Technol. 2020;29(5):261–268.
  • Joosten M, Bökkerink GMJ, Stals JJM, et al. The effect of an interval training on skill retention of high-complex low-volume minimal invasive pediatric surgery skills: a pilot study. J Laparoendosc Adv Surg Tech A. 2021;31(7):820–828.
  • Elarbi MM, Ragle CA, Fransson BA, et al. Face, construct, and concurrent validity of a simulation model for laparoscopic ovariectomy in standing horses. J Am Vet Med Assoc. 2018;253(1):92–100.
  • Rueda Esteban RJ, López-McCormick JS, Rodríguez-Bermeo AS, et al. Face, content, and construct validity evaluation of simulation models in general surgery laparoscopic training and education: a systematic review. Surg Innov. 2022;15533506221123704. DOI:10.1177/15533506221123704
  • Suebnukarn S, Chaisombat M, Kongpunwijit T, et al. Construct validity and expert benchmarking of the haptic virtual reality dental simulator. J Dent Educ. 2014;78(10):1442–1450.
  • Koch AD, Buzink SN, Heemskerk J, et al. Expert and construct validity of the Simbionix GI Mentor II endoscopy simulator for colonoscopy. Surg Endosc. 2008;22(1):158–162.
  • van der Wiel Se, Koch AD, Bruno MJ. Face and construct validity of a novel mechanical ERCP simulator. Endosc Int Open. 2018;6(6):E758–e65.
  • Alshuaibi M, Perrenot C, Hubert J, et al. Concurrent, face, content, and construct validity of the RobotiX Mentor simulator for robotic basic skills. Int J Med Robot. 2020;16(3):e2100.
  • Leijte E, Arts E, Witteman B, et al. Construct, content and face validity of the eoSim laparoscopic simulator on advanced suturing tasks. Surg Endosc. 2019;33(11):3635–3643.
  • Sinceri S, Berchiolli R, Marconi M, et al. Face, content, and construct validity of a simulator for training in endovascular procedures. Minim Invasive Ther Allied Technol. 2018;27(6):315–320.
  • Bekele A, Wondimu S, Firdu N, et al. Trends in retention and decay of basic surgical skills: evidence from addis ababa university, Ethiopia: a prospective case-control cohort study. World J Surg. 2019;43(1):9–15.
  • Varley M, Choi R, Kuan K, et al. Prospective randomized assessment of acquisition and retention of SILS skills after simulation training. Surg Endosc. 2015;29(1):113–118.
  • Scerbo MW, Britt RC, Montano M, et al. Effects of a retention interval and refresher session on intracorporeal suturing and knot tying skill and mental workload. Surgery. 2017;161(5):1209–1214.
  • Joosten M, Hillemans V, van Capelleveen M, et al. The effect of continuous at-home training of minimally invasive surgical skills on skill retention. Surg Endosc. 2022;1–9.