126
Views
6
CrossRef citations to date
0
Altmetric
ARTICLES

Response Surface Modeling for Co-Remediation of Cr6+ and Pentachlorophenol by Bacillus cereus RMLAU1: Bioreactor Trial and Structural and Functional Characterization by SEM-EDS and FT-IR Analyses

&
Pages 328-344 | Published online: 30 Sep 2014

REFERENCES

  • Aksu, Z., and F. Gonen. 2006. Binary biosorption of phenol and Cr (VI) onto immobilized activated sludge in a packed bed: Prediction of kinetic parameters and breakthrough curves. Sep. Purif. Technol. 49:205–216.
  • Alves de Lima e Silva, A., M. P. Pereira, R. G. S. Filho, and E. Hofer. 2007. Utilization of phenol in the presence of heavy metals by metal-tolerant nonfermentative gram-negative bacteria isolated from wastewater. Microbiologia 49:68–73.
  • American Public Health Association. 1998. Standard methods for examination of water and wastewater, 20th ed. Washington DC, USA: American Public Health Association, American Water Works Association, and Water Pollution Control Federation.
  • Bergmann, J. G., and J. Sanik. 1957. Determination of trace amounts of chlorine in naphtha. Anal. Chem. 29:241–243.
  • Beveridge, T. J. 1988. The bacterial surface: General considerations towards design and function. Can. J. Microbiol. 34:363–372.
  • Chatterjee, S., G. B. Sau, and S. K. Mukherjee. 2011. Bioremediation of Cr6+ from chromium-contaminated wastewaters by free and immobilized cells of Cellulosimicrobium cellulans KUCr3. Bioremediat. J. 15:173–180.
  • Chirwa, E. M. N., and H. E. R. Smit. 2010. Simultaneous Cr (VI) reduction and phenol degradation in a trickle bed bioreactor: Shock loading response. Chem. Eng. Trans. 20:55–60.
  • Chirwa, E. M. N., and Y. T. Wang. 2000. Simultaneous chromium (VI) reduction and phenol degradation in an anaerobic consortium of bacteria. Water Res. 33:2376–2384.
  • Chirwa, E. M. N., and Y. T. Wang. 2001. Simultaneous Cr (VI) reduction and phenol degradation in a fixed-film coculture bioreactor: Reactor performance. Water Res. 35:1951–1932.
  • Dhal, B., H. Thatoi, N. Das, and B. D. Pandey. 2010. Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J. Chem. Technol. Biotechnol. 85:1471–1479.
  • Doddapaneni, K. K., R. Tatineni, R. Potumarthi, and L. N. Mangamoori. 2007. Optimization of media constituents through response surface methodology for improved production of alkaline proteases by Serratia rubidaea. J. Chem. Technol. Biotechnol. 82:721–729.
  • Faisal, M., and S. Hasnain. 2006. Detoxification of Cr (VI) by Bacillus cereus S-6. Res. J. Microbiol. 1:45–50.
  • Garg, S. K., and M. Tripathi. 2011. Strategies for decolorization and detoxification of pulp and paper mill effluent. Rev. Environ. Contam. Toxicol. 212:213–236.
  • Garg, S. K., M. Tripathi, S. K. Singh, and A. Singh. 2013. Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (10510): Characterization of PCP dechlorination products, bacterial structure and functional groups. Environ. Sci. Pollut. Res. 20:2288–2304.
  • Garg, S. K., M. Tripathi, and T. Srinath. 2012. Strategies for chromium bioremediation of tannery effluent. Rev. Environ. Contam. Toxicol. 217:75–140.
  • Gu, Y., and R. A. Korus. 1995. Kinetics of pentachlorophenol degradation by Flavobacterium species. Appl. Biochem. Biotechnol. 43:374–378.
  • Halim, S. F. A., A. H. Kamaruddin, and W. J. N. Fernado. 2009. Continous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: Optimization using response surface methodology (RSM) and mass transfer studies. Bioresour. Technol. 100:710–716.
  • Kamney, A. A. 2008. FTIR spectroscopic studies of bacterial cellular responses to environmental factors, plant-bacterial interactions and signaling. Spectroscopy 22:83–95.
  • Masood, F., and A. Malik. 2011. Hexavalent chromium reduction by Bacillus sp. Strain FM1 isolated from heavy-metal contaminated soil. Bull. Environ. Contam. Toxicol. 86:114–119.
  • Montgomery, D. C. 2001. Design and analysis of experiments, 5th ed., 427–472. New York: John Wiley and Sons.
  • Naik, U. C., S. Srivastava, and I. S. Thakur. 2012. Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium. Environ. Sci. Pollut. Res. 19:3005–3014. doi:10.1007/s11356-012-0811-6.
  • Pal, A., S. Dutta, and A. K. Paul. 2005. Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr. Microbiol. 66:327–330.
  • Pei, Q. H., S. Shahir, A. S. Santhana Raj, Z. A. Zakaria, and W. A. Ahmad. 2009. Chromium(VI) resistance and removal by Acinetobacter haemolyticus. World J. Microbiol. Biotechnol. 25:1085–1093.
  • Polti, M. A., M. J. Amoroso, and C. M. Abate. 2011. Intracellular chromium accumulation by Streptomyces sp. MC1. Water Air Soil Pollut. 214:49–57.
  • Sharma, A., and I. S. Thakur. 2008. Characterization of pentachlorophenol degrading bacterial consortium from chemostat. Bull. Environ. Contam. Toxicol. 81:12–18.
  • Sharma, A., I. S. Thakur, and P. Dureja. 2009. Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site. Biodegradation 20:643–650.
  • Shen, H., and Y. T. Wang. 1995. Modeling simultaneous hexavalent chromium reduction and phenol degradation by a defined coculture of bacteria. Biotechnol. Bioeng. 48:606–616.
  • Singh, S. K., S. K. Singh, V. R. Tripathi, S. K. Khare, and S. K. Garg. 2011. Comparative one-factor-at-a-time, response surface (statistical) and bench-scale bioreactor level optimization of thermoalkaline protease production from a psychrotrophic Pseudomonas putida SKG-1 isolate. Microb. Cell Fact. 10:114. doi: 10.1186/1475-2859-10-114.
  • Song, H., Y. Liu, W. Xu, G. Zeng, N. Aibibu, L. Xu, and B. Chen. 2009. Simultaneous Cr (VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095. Biores. Technol. 100:5079–5084.
  • Srivastava, S., A. H. Ahmad, and I. S. Thakur. 2007. Removal of chromium and pentachlorophenol from tannery effluent. Bioresour. Technol. 98:1128–1132.
  • Srivastava, S., and I. S. Thakur. 2003. Bioadsorption potentiality of Acinetobacter sp. strain IST103 of a bacterial consortium for removal of chromium from tannery effluent. Bioresour. Technol. 97:1167–1173.
  • Thakur, I. S., and S. Srivastava. 2011. Biodegradation and bioconversion of chromium and pentachlorophenol in tannery effluent by microorganisms. Int. J. Technol. 3:224–233.
  • Tripathi, M., and S. K. Garg. 2013. Co-remediation of pentachlorophenol and Cr6+ by free and immobilized cells of native Bacillus cereus isolate: Spectrometric characterization of PCP dechlorination products, bioreactor trial and chromate reductase activity. Process Biochem. 48:496–509.
  • Tripathi, M., S. Vikram, R. K. Jain, and S. K. Garg. 2011. Isolation and growth characteristics of chromium (VI) and pentachlorophenol tolerant bacterial isolate from treated tannery effluent for its possible use in simultaneous bioremediation. Indian J. Microbiol. 51:61–69.
  • Tziotzios, G., E. Dermou, P. Eftychia, V. Dorothea, and V. Dimitris. 2008. Simultaneous phenol removal and biological reduction of hexavalent chromium in a packed-bed reactor. J. Chem. Technol. Biotechnol. 83:829–835.
  • Venil, C. K., V. Mohan, P. Lakshmanaperumalsamy, and M. B. Yerima. 2011. Optimization of chromium removal by the indigenous bacterium Bacillus spp. REP02 using the response surface methodology. ISRN Microbiol. Article 951694. doi: 10.5402/2011/951694.
  • Xu, W. H., Y. G. Liu, G. M. Zeng, X. Li, H. X. Song, and Q. Q. Peng. 2009. Characterization of Cr (VI) resistance and reduction by Pseudomonas aeruginosa. Trans. Nonferrous Met. Soc. China 19:1336–1341.
  • Zakaria, Z. A., W. A. Ahmad, F. Razali, and J. Samin. 2009. Evaluation of the combined Cr (VI) removal capacity of sawdust and sawdust-immobilized Acinetobacter haemolyticus supplied with brown sugar. Water Air Soil Pollut. 204:195–203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.