161
Views
4
CrossRef citations to date
0
Altmetric
ARTICLES

Determination of Matrix Pore Size Distribution in Fractured Clayey Till and Assessment of Matrix Migration of Dechlorinating Bacteria

, , &
Pages 295-308 | Published online: 30 Sep 2014

REFERENCES

  • Abell, A. B., Willis, K. L., and Lange, D. A. 1999. Mercury intrusion porosimetry and image analysis of cement-based materials. J. Colloid Interf. Sci. 211:39–44.
  • Adrian, L., Szewzyk, U., Wecke, J., and Gorisch, H. 2000. Bacterial dehalorespiration with chlorinated benzenes. Nature 408:580–583.
  • Aydilek, A. H., Oguz, S. H., and Edil, T. B. 2002. Digital image analysis to determine pore opening size distribution of nonwoven geotextiles. J. Comput. Civil Eng. 16:280–290.
  • Beloin, R. M., Sinclair, J. L., and Ghiorse, W. C. 1988. Distribution and activity of microorganisms in subsurface sediments of a pristine study site in Oklahoma. USA. Microb. Ecol. 16:85–97.
  • Bouchard, B., Beaudet, R., Villemur, R., McSween, G., Lepine, F., and Bisaillon, J. G. 1996. Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Int. J. Syst. Evol. Microbiol. 46:1010–1015.
  • Chambon, J. C., Binning, P. J., Jørgensen, P. R., and Bjerg, P. L. 2011. A risk assessment tool for contaminated sites in low-permeability fractured media. J. Contam. Hydrol. 124:82–98.
  • Chambon, J. C., Broholm, M. M., Binning, P. J., and Bjerg, P. L. 2010. Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system. J. Contam. Hydrol. 112:77–90.
  • Chapelle, F. H., and Lovley, D. R. 1990. Rates of microbial metabolism in deep coastal plain aquifers. Appl. Environ. Microbiol. 56:1865–1874.
  • Cheng, D., and He, J. 2009. Isolation and characterization of “Dehalococcoides” sp. strain MB, which dechlorinates tetrachloroethene to trans-1,2-dichloroethene. Appl. Environ. Microbiol. 75:5910–5918.
  • Christiansen, C. M., Damgaard, I., Broholm, M., Kessler, T., Klint, K. E., Nilsson, B., and Bjerg, P. L. 2010. Comparison of delivery methods for enhanced in situ remediation in clay till. Ground Water Monit. Remediat. 30:107–122.
  • Christiansen, C., Riis, C., Christensen, S. B., Broholm, M. M., Christensen, A. G., Klint, K. E. S., Wood, J. S. A., Bauer-Gottwein, P., and Bjerg, P. L. 2008. Characterization and quantification of pneumatic fracturing effects at a clay till site. Environ. Sci. Technol. 42:570–576.
  • Christiansen, N., and Ahring, B. K. 1996. Introduction of a de novo bioremediation activity into anaerobic granular sludge using the dechlorinating bacterium DCB-2. Antonie van Leeuwenhoek 69:61–66.
  • Cole, J. R., Cascarelli, A. L., Mohn, W. W., and Tiedje, J. M. 1994. Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol. Appl. Environ. Microbiol. 60:3536–3542.
  • Da, P. L. G., and Sleep, B. E. 2007. The spatial distribution of eubacteria and archaea in sand-clay columns degrading carbon tetrachloride and methanol. J. Contam. Hydrol. 94:34–48.
  • Damgaard, I., Bjerg, P. L., Jacobsen, C. S., Tsitonaki, A., Jespersen, H. K., and Broholm, M. M. 2013a. Performance of full scale enhanced reductive dechlorination in 2 clay till. Ground Water Monit. Remediat. 33:48–61.
  • Damgaard, I., Bjerg, P. L., Baelum, J., Scheutz, C., Hunkerler, D., Jacobsen, C. S., Tuxen, N., and Broholm, M. M. 2013b. Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial and compound specific isotope analysis. J. Contam. Hydrol. 146:37–50.
  • DeWeerd, K. A., Mandelco, L., Tanner, R. S., Woese, C. R., and Suflita, J.M. 1990. Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch. Microbiol. 154:23–30.
  • Diamond, S. 1970. Pore size distributions in clays. Clays Clay Miner. 18:7–23.
  • Diamond, S. 2000. Mercury porosimetry: An inappropriate method for the measurement of pore size distributions in cement-based materials. Cement Concrete Res. 30:1517–1525.
  • Diamond, S., and Leeman, M. E. 1995. Pore size distributions in hardened cement paste by SEM image analysis. Mater. Res. Soc. Symp. Proc. 370:217–226.
  • Duhamel, M., Mo, K., and Edwards, E. A. 2004. Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl. Environ. Microbiol. 70:5538–5545.
  • Fredrickson, J. K., McKinley, J. P., Bjornstad, B. N., Long, P.E., Ringelberg, D. B., White, D. C., Krumholz, L.R., Suflita, J. M., Colwell, F. S., Lehman, R. M., and Phelps, T. J. 1997. Pore-size constraints on the activity and survival of subsurface bacteria in a late Cretaceous shale-sandstone sequence, northwestern New Mexico. Geomicrobiol. J. 14:183–202.
  • Gerritse, J., Renard, V., Visser, J., and Gottschal, J. C. 1995. Complete degradation of tetrachloroethene by combining anaerobic dechlorinating and aerobic methanotrophic enrichment cultures. Appl. Environ. Microbiol. 43:920–928.
  • He, J., Ritalahti, K. M., Yang, K. L., Koenigsberg, S. S., and Loffler, F. E. 2003. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65.
  • Holliger, C., Hahn, D., Harmsen, H., Ludwig, W., Schumacher, W., Tindall, B., Vazquez, F., Weiss, N., and Zehnder, A. J.1998. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch. Microbiol. 169:313–321.
  • Hønning, J., Broholm, M. M., and Bjerg, P. L. 2007. Role of diffusion in chemical oxidation of PCE in a dual permeability system. Environ. Sci. Technol. 41:8426–8432.
  • JEOL 2006. Invitation to the SEM World. JEOL USA, Inc. (Last Update: March 5, 2013). http://www.jeolusa.com/RESOURCES/ElectronOptics/DocumentsDownloads/tabid/320/Default.aspx?EntryId=257 (accessed April 28, 2006).
  • Krumholz, L. R., Sharp, R., and Fishbain, S. S. 1996. A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Appl. Environ. Microbiol. 62:4108–4113.
  • Lawrence, J. R., Hendry, M. J., Wassenaar, L. I., Germida, J. J., Wolfaardt, G. M., Fortin, N., and Greer, C. W. 2000. Distribution and biogeochemical importance of bacterial populations in a thick clay-rich aquitard system. Microb. Ecol. 40:273–291.
  • Lee, P. K., Macbeth, T. W., Sorenson, K. S. Jr., Deeb, R. A., and Alvarez-Cohen, L. 2008. Quantifying genes and transcripts to assess the in situ physiology of “Dehalococcoides” spp. in a trichloroethene-contaminated groundwater site. Appl. Environ. Microbiol. 74:2728–2739.
  • Lemming, G., Friis-Hansen, P., and Bjerg, P. L. 2010. Risk-based economic decision analysis of remediation options at a PCE-contaminated site. J. Environ. Manage. 91:1169–1182.
  • Lendvay, J. M., Loffler, F. E., Dollhopf, M., Aiello, M. R., Daniels, G., Fathepure, B. Z., Gebhard, M., Heine, R., Helton, R., Shi, J., Krajmalnik-Brown, R., Major, C.L. Jr., BarcelonaM. J., Petrovskis, E., Hickey, R., Tiedje, J. M., and Adriaens, P. 2003. Bioreactive barriers: A comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ. Sci. Technol. 37:1422–1431.
  • Loffler, F. E., Sun, Q., Li, J., and Tiedje, J. M. 2000. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl. Environ. Microbiol. 66:1369–1374.
  • Mannik, J., Driessen, R., Galajda, P., Keymer, J. E., and Dekker, C. 2009. Bacterial growth and motility in sub-micron constrictions. Proc. Natl. Acad. Sci. U. S. A. 106:14861–14866.
  • Manoli, G., Chambon, J. C., Bjerg, P. L., Scheutz, C., Binning, P. J., and Broholm, M. M. 2012. A remediation performance model for enhanced metabolic reductive dechlorination of chloroethenes in fractured clay till. J. Contam. Hydrol. 131:64–78.
  • Maymo-Gatell, X., Chien, Y., Gossett, J. M., and Zinder, S. H.1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571.
  • Reszat, T. N., and Hendry, M. J. 2009. Migration of colloids through nonfractured clay-rich aquitards. Environ. Sci. Technol. 43:5640–5646.
  • Rosenbom, A. E., Therrien, R., Refsgaard, J. C., Jensen, K. H., Ernstsen, V., and Klint, K. E. 2009. Numerical analysis of water and solute transport in variably-saturated fractured clayey till. J. Contam. Hydrol. 104:137–152.
  • Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. M., Pernicone, N., Ramsay, J. D. F., Sing, K. S. W., and Unger, K. K. 1994. Recommendations for the characterization of porous solids. Pure Appl. Chem. 66:1739–1758.
  • Sanford, R. A., Cole, J. R., Loffler, F. E., and Tiedje, J. M. 1996. Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl. Environ. Microbiol. 62:3800–3808.
  • Scheutz, C., Broholm, M. M., Durant, N. D., Weeth, E. B., Jorgensen, T.H., Dennis, P., Jacobsen, C.S., Cox, E. E., Chambon, J. C., and Bjerg, P.L. 2010. Field evaluation of biological enhanced reductive dechlorination of chloroethenes in clayey till. Environ. Sci. Technol.44:5134–5141.
  • Scheutz, C., Durant, N. D., Dennis, P., Hansen, M. H., Jorgensen, T., Akobsen, J. R., Cox, E. E., and Bjerg, P. L. 2008. Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during an enhanced reductive dechlorination field demonstration. Environ. Sci. Technol. 42:9302–9309.
  • Scholz-Muramatsu, H., Neumann, A., Meßmer, M., Moore, E., and Diekert, G.1995. Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch. Microbiol. 163:48–56.
  • Scow, K. M., and Johnson, C. R. 1997. Effect of sorption on biodegradation of soil pollutants. Adv. Agron. 58:1–56.
  • Sevee, J. E. 2010. Effective porosity measurement of a marine clay. J. Environ. Eng. 136:674–681.
  • Sharma, P. K., and McCarty, P. L.1996. Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene. Appl. Environ. Microbiol. 62:761–765.
  • Sinclair, J. L., Randtke, S. J., Denne, J. E., Hathaway, L. R., and Ghiorse, W. C. 1990. Survey of microbial populations in buried-valley aquifer sediments from northeastern Kansas USA. Ground Water 28:369–377.
  • Takeuchi, M., Kawabe, Y., Watanabe, E., Oiwa, T., Takahashi, M., Nanba, K., Kamagata, Y., Hanada, S., Ohko, Y., and Komai, T. 2011. Comparative study of microbial dechlorination of chlorinated ethenes in an aquifer and a clayey aquitard. J. Contam. Hydrol. 124:14–24.
  • Tsakiroglou, C. D., and Ioannidis, M. A. 2008. Dual-porosity modelling of the pore structure and transport properties of a contaminated soil. Eur. J. Soil Sci. 59:744–761.
  • Tzovolou, D. N., Benoit, Y., HaeselerF., Klint, K. E., and Tsakiroglou, C. D. 2009. Spatial distribution of jet fuel in the vadoze zone of a heterogeneous and fractured soil. Sci. Total Environ. 407:3044–3054.
  • Utkin, I., Woese, C., and Wiegel, J. 1994. Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int. J. Syst. Bacteriol. 44:612–619.
  • Wild, A., Hermann, R., and Leisinger, T. 1996. Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation 7:507–511.
  • Yang, Z., Peng, X. F., Lee, D. J., and Chen, M. Y. 2009. An image-based method for obtaining pore-size distribution of porous media. Environ. Sci. Technol. 43:3248–3253.
  • Zhang, C., Kang, Q., Wang, X., Zilles, J. L., Muller, R. H., and Werth, C. J. 2010. Effects of pore-scale heterogeneity and transverse mixing on bacterial growth in porous media. Environ. Sci. Technol. 44:3085–3092.
  • Ziel, R., Haus, A., and Tulke, A. 2008. Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis. J. Membr. Sci. 323:241–246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.