233
Views
12
CrossRef citations to date
0
Altmetric
Articles

Biodegradation of 2-Chlorobenzoic Acid by Enterobacter cloacae: Growth Kinetics and Effect of Growth Conditions

, &
Pages 207-217 | Published online: 07 Aug 2015

REFERENCES

  • Aljundi, I. H., K. M Khleifat, A. M Khlaifat, A. M. Ibrahim, and K. A. Tarawneh. 2010. Biodegradation of 2-chlorobenzoic acid by Klebsiella oxytoca: Mathematical modeling and effect of some growth conditions. Ind. Eng. Chem. Res. 49:7159–7167.
  • Alva, V. A., and B. M. Peyton. 2003. Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: Influence of pH and salinity. Environ. Sci. Technol. 37:4397–4402.
  • Ampe, F., D. Leonard, and N. D. Lindley. 1998. Repression of phenol catabolism by organic acids in Ralstonia eutropha. Appl. Environ. Microbiol. 64:1–6.
  • Arensdorf, J. J., and D. D. Focht. 1994. Formation of chlorocatechol meta cleavage products by a Pseudomonad during metabolism of monochlorbiphenyls. Appl. Environ. Microbiol. 60:2884–2889.
  • Banta, G., and R. S. Kahlon. 2005. Dehalogenation of 4-chlorobenzoic acid by Pseudomonas isolates dehalogenation of 4-chlorobenzoic acid by Pseudomonas isolates. Indian. J. Microbiol. 47:139–143.
  • Bartels, I., H. J. Knackmuss, and W. Reineke. 1984. Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl. Environ. Microbiol. 47:500–505.
  • Beshay, U., D. Abd-El-Haleem, H. Moawad, and S. Zaki. 2002. Phenol biodegradation by free and immobilized Acinetobacter. Biotechnol. Lett. 24:1295–1297.
  • Brunsbach, F. R., and W. Reineke. 1993. Degradation of chlorobenzoates in soil slurry by special organisms. Appl. Microbiol. Biotechnol. 39:117–122.
  • Champagne, P., P. J. Van Geel, and W. J. Parker. 1998. A proposed transient model for cometabolism in biofilm systems. Biotechnol. Bioeng. 60:541–550.
  • Deweerd, K. A., and D. L. Bedard. 2007. Use of halogenated benzoates and other halogenated aromatic compounds to stimulate the microbial dechlorination of PCBs. Environ. Sci. Technol. 33:2057–2063.
  • Kafilzadeh, F., M. Nikvarz, S. Jabbari, and Y. Tahery. 2012. Evaluation of biodegradation of 2-chlorobenzoic acid by isolated bacteria from landfill soils in Shiraz, Iran. Afr. J. Microbiol. Res. 6:5708–5714.
  • Gentry, T. J., D. J. Newby, and K. L. Josephson. 2001. Soil microbial population dynamics following bioaugmentation with a 3-chlorobenzoate-degrading bacterial culture. Biodegradation 12:349–357.
  • Hernandez, B. S., J. J. Arensdorf, and D. D. Focht. 1995. Catabolic characteristics of biphenyl-utilizing isolates which cometabolize PCBs. Biodegradation 6:75–82.
  • Hickey, W. J., and D. D. Focht. 1990. Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Appl. Environ. Microbiol. 56:3842–3850.
  • Khleifat, K. M. 2006. Biodegradation of phenol by Ewingella americana: Effect of carbon starvation and some growth conditions. Process Biochem. 41:2010–2016.
  • Khleifat, K. M. 2007a. Biodegradation of phenol by Actinobacillus sp: Mathematical interpretation and effect of some growth conditions. Bioremediat. J. 11:1–10.
  • Khleifat, K. M. 2007b. Effect of substrate adaptation, carbon starvation and cell density on the biodegradation of phenol by Actinobacillus sp. Fresenius Environ. Bull. 16:726–730.
  • Khleifat, K. M., I. Al-Majali, R. Shawabkeh, and K. A. Tarawneh. 2007. Effect of carbon and nitrogen sources on the biodegradation of phenol by Klebsiella oxytoca and growth kinetic characteristics. Fresenius Environ. Bull. 16:1–7.
  • Khleifat, K. M., K. A. Tarawneh, M. A. Wedyan, A. A. Al-Tarawneh, and K. Al Sharafa. 2008. Growth kinetics and toxicity of Enterobacter cloacae Grown on linear alkylbenzene sulfonate as sole carbon source. Curr. Microbiol. 57:364–370.
  • Krooneman, J., E. B. A. Wieringa, E. R. B. Moore, J. Gerritse, R. A. Prins, and J. C. Gottschal. 1996. Isolation of Alcaligenes sp. strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via a pathway not involving (chloro)catechols. Appl. Environ. Microbiol. 62:2427–2434.
  • Leonard, D., and N. D. Lindley. 1998. Carbon and energy flux constraints in continuous cultures of Alcaligenes eutrophus grown on phenol. Microbiology 144:241–248.
  • Leung, K. T., M. Moore, H. Lee, and J. T. Trevors. 2005. Effect of carbon starvation on p-nitophenol degradation by a Moraxella strain in buffer and river water. FEMS Microbiol. Ecol. 51:237–245.
  • Leven, L., and A. Schnürer. 2005. Effect of temperature on biological degradation of phenols, benzoate and phthalates under methanogenic conditions. Int. Biodeter. Biodegrad. 55:153–160.
  • Lob, K. C., and P. P. Tar. 2000. Effect of additional carbon sources on biodegradation of phenol. Bull. Environ. Contamin. Toxicol. 64:756–763.
  • Loh, K. C., and S. J. Wang. 1998. Enhancement of biodegradation of phenol and a nongrowth substrate 4-chlorophenol by medium augmentation with conventional carbon sources. Biodegradation 8:329–338.
  • Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
  • Margesin, R., and F. Schinner. 1997. Effect of temperature on oil degradation by a psychrotrophic yeast in liquid culture and in soil. FEMS Microbiol. Ecol. 24:243–249.
  • Marks, T. S., A. R. W. A. Smith, and A. V. Quirk. 1984. Degradation of 4-chlorobenzoic acid by Arthrobacter sp. Appl. Environ. Microbiol. 48:1020–1025.
  • Mars, A. E., T. Kasberg, S. R. Kaschabek, M. H. van Agteren, D. B. Janssen, and W. Reineke. 1997. Microbial degradation of chloroaromatics: Use of the meta-cleavage pathway for mineralization of chlorobenzene. J. Bacteriol. 179:4530–4537.
  • Matin, A., M. Baetens, S. Pandza, C. H. Park, and S. Waggoner. 1999. Survival strategies in the stationary phase. In Microbial ecology and infectious disease, ed. E. Roserberg, 30–48. Washington, DC: ASM Press.
  • Müller, R., W. D. Deckwer, and V. Hecht. 1996. Degradation of chloroand methyl- substituted benzoic acids by a genetically modified microorganism. Biotechnol. Bioeng. 51:528–537.
  • Neumann, G., R. Teras, L. Manson, M. Kivisaar, F. Schayer, and H. J. Heipieper. 2004. Simultaneous degradation of atrazine and phenol by Pseudomonas sp. strain ADP: Effects of toxicity and adaptation. Appl. Environ. Microbiol. 70:1907–19012.
  • Oi, Y., L. Zhao, Z. O. Ojekunle, and X. Tan. 2007. Isolation and preliminary characterization of a 3-chlorobenzoate degrading bacteria. J. Environ. Sci. 19:332–337.
  • Onysko, K., H. Budman, and C. Robinson. 2000. Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5, Biotechnol. Bioeng. 70:291–299.
  • Romanov, V., and R. P. Hausinger. 1994. Pseudomonas aeruginosa 142 uses a three-component ortho-halobenzoate 1,2-dioxygenase for metabolism of 2,4-dichloro-and 2-chlorobenzoate. J. Bacteriol. 176:3368–3374.
  • Reardon, K. F., D. C. Mosteller, J. B. Rogers, N. M. DuTeau, and K-H. Kim. 2002. Biodegradation kinetics of aromatic hydrocarbon mixtures by pure and mixed bacterial cultures. Environ. Health. Perspect. Suppl. 110:S6.
  • Saleh, Y. E., M. A. M. Abo-State, O. A. A. Khalil. 2013. Aerobic degradation of 3-chlorobenzoic acid by bacterial strains isolated from petroleum polluted soils. World Appl. Sci. J. 21:1328–1340.
  • Shawabkeh, R., K. M. Khleifat, I. Al-Majali, and K. A. Tarawneh. 2007. Rate of biodegradation of phenol by Klebsiella oxytoca in minimal medium and nutrient broth conditions. Bioremediat. J. 11:13–19.
  • Soi, T. V., E. G. Plotnikova, J. Cole, W. F. Guerin, M. Bagdasarian, and J. Tiedje. 1999. Cloning, expression and nucleotide sequence of the Pseudomonas aeruginosa 142 ohb genes coding for oxygenolytic ortho dehalogenation of halobenzoates. Appl. Environ. Microbiol. 65:2151–2162.
  • Tapiainen, T., T. Kontiokari, L. Sammalkivi, I. Ikäheimo, M. Koskela, and M. Uhari. 2001. Effect of xylitol on growth of Streptococcus pneumoniae in the presence of fructose and sorbitol. Antimicrob. Agents Chemother. 45:166–169.
  • Topp, E., R. L. Crawford, and R. S. Hanson. 1988. Influence of readily metabolizable carbon on pentachlorophenol-degrading Flavobacterium sp. Appl. Environ. Microbiol. 54:2452–2459.
  • Urgun-Demirtas, M., K. R. Pagilla, B. C. Stark, and D. Webster. 2003. Biodegradation of 2-chlorobenzoate by recombinant Burkholderia cepacia expressing Vitreoscilla hemoglobin under variable levels of oxygen availability. Biodegradation 14:357–365.
  • Van Der Woude, B. J., J. C. Gottschal, and R. A. Prins. 1995. Degradation of 2,5-dichlorobenzoic acid by Pseudomonas aeruginosa JB2 at low oxygen tensions. Biodegradation 6:39–46.
  • Vollmer, M. D., and M. Schlomann. 1995. Conversion of 2- chloro-cis, cis-muconate and its metabolites 2-chloro- and 5- chloromuconolactone by chloromuconate cycloisomerases of pJP4 and pAC27. J. Bacteriol. 177:2938–2941.
  • Wasilkowski, D., Z. Swedziol, and A. Mrozik. 2012. The applicability of genetically modified microorganisms in bioremediation of contaminated environments. Chemik 66:817–826.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.