469
Views
17
CrossRef citations to date
0
Altmetric
Articles

Root exudates and plant secondary metabolites of different plants enhance polychlorinated biphenyl degradation by rhizobacteria

, &
Pages 108-116 | Published online: 22 Mar 2016

References

  • Basu, P., and A. Ghosh. 2001. Production of indole acetic acid in cultures by a Rhizobium species from the root nodules of a monocotyledonous tree, Roystonea regia. Acta Biotechnol. 21:65–72. doi: 10.1002/1521-3846(200102)21:1<65::AID-ABIO65>3.0.CO;2-#.
  • Beyer, A., and M. Biziuk. 2009. Environmental fate and global distribution of polychlorinated biphenyls. Rev. Environ. Contam. Toxicol. 201:137–158. doi: 10.1007/978-1-4419-0032-6.
  • Carvalhais, L. C., P. G. Dennis, D. Fedoseyenko, M. R. Hajirezaei, R. Borriss, and N. von Wirén. 2011. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J. Plant Nutr. Soil Sci. 174:3–11. doi: 10.1002/jpln.201000085.
  • Correa, P., L. Lin, C. Just, D. Hu, K. Hornbuckle, J. Schnoor, and B. Van Aken. 2010. The effects of individual PCB congeners on the soil bacterial community structure and the abundance of biphenyl dioxygenase genes. Environ. Int. 36:901–906. doi: 10.1016/j.envint.2009.07.015.
  • Erickson, M., and R. Kaley. 2010. Applications of polychlorinated biphenyls. Environ. Sci. Pollut. Res. 18:135–151. doi: 10.1007/s11356-010-0392-1.
  • Furukawa, K., and H. Fujihara. 2008. Microbial degradation of polychlorinated biphenyls: Biochemical and molecular features. J. Biosci. Bioeng. 105:433–449. doi: 10.1263/jbb.105.433.
  • Hornbuckle, K., and L. Robertson. 2010. Polychlorinated biphenyls (PCBs): Sources, exposures, toxicities. Environ. Sci. Technol. 44:2749–2751. doi: 10.1021/es100801f.
  • Ionescu, M., K. Beranovaa, V. Dudkovaa, L. Kochankovac, K. Demnerovaa, T. Macekb, and M. Mackovaa. 2009. Isolation and characterization of different plant associated bacteria and their potential to degrade polychlorinated biphenyls. Int. Biodeter. Biodegrad. 63:667–672. doi: 10.1016/j.ibiod.2009.03.009.
  • Jha, P., J. Panwar, and P. N. Jha. 2015. Secondary plant metabolites and root exudates: Guiding tools for polychlorinated biphenyl biodegradation. Int. J. Environ. Sci. Technol. 12:789–802. doi: 10.1007/s13762-014-0515-1.
  • Magee, K. D., A. Michael, H. Ullah, and S. K. Dutta. 2008. Dechlorination of PCB in the presence of plant nitrate reductase. Environ. Toxicol. Pharmacol. 25:144–147. doi: 10.1016/j.etap.2007.10.009.
  • Ohtsubo, Y., H. Goto, Y. Nagata, T. Kudo, and M. Tsuda. 2006. Identification of a response regulator gene for catabolite control from a PCB-degrading beta-proteobacteria, Acidovorax sp. KKS102. Mol. Microbiol. 60:1563–1575.
  • Pham, T., Y. Tu, and M. Sylvestre. 2012. Remarkable abilities of Pandoraea pnomenusa B356 biphenyl dioxygenase to metabolize simple flavonoids. Appl. Environ. Microbiol. 78:35–60. doi: 10.1128/AEM.00225-12.
  • Phillips, L. A., C. W. Greer, R. E. Farrell, and J. Germida James. 2012. Plant root exudates impact the hydrocarbon degradation potential of a weathered-hydrocarbon contaminated soil. Appl. Soil Ecol. 52:56–64. doi: 10.1016/j.apsoil.2011.10.009.
  • Philippot, L., J. M. Raaijmakers, P. Lemanceau, and W. van der Putten. 2013. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11:789–799. doi:10.1038/nrmicro3109.
  • Piterina, A., J. Bartlett, and J. Pembroke. 2010. Molecular analysis of bacterial community DNA in sludge undergoing autothermal thermophilic aerobic digestion (ATAD): Pitfalls and improved methodology to enhance diversity recovery. Diversity 2:505–526.
  • Randall, J., N. Goldberg, J. Kemp, M. Radionenko, M. French, M. Olsen, and S. Hanson. 2009. Genetic analysis of a novel Xylella fastidiosa subspecies found in the southwestern United States. Appl. Environ. Microbiol. 75:5631–5638. doi: 10.1128/AEM.00609-09.
  • Ryslava, E., Z. Krejcik, T. Macek, H. Novakova, and M. Mackova. 2003. Study of PCB degradation in real contaminated soil. Fresenius Environ. Bull. 12:296–301.
  • Singer, A. 2006. The chemical ecology of pollutant biodegradation. Bioremediation and phytoremediation from mechanistic and ecological perspectives. In Phytoremediation and rhizoremediation. Theoretical background, ed. M. Mackova, D. N. Dowling, and T. Macek, 5–19. Dordrecht: Springer.
  • Slater, H., T. Gouin, and M. Leigh. 2011. Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species. Chemosphere 84:199–206. doi: 10.1016/j.chemosphere.2011.04.058.
  • Somaraja, P., D. Gayathri, and N. Ramaiah. 2013. Molecular characterization of 2-chlorobiphenyl degrading Stenotrophomonas maltophilia GS-103. Bull. Environ. Contam. Toxicol. 91:148–153. doi: 10.1007/s00128-013-1044-1.
  • Suenaga, H., T. Watanabe, M. Sato, and K. Furukawa. 2002. Alternation of regiospecificity in biphenyl dioxygenase by active-site engineering. J. Bacteriol. 184:3682–3688. doi: 10.1128/JB.184.13.3682-3688.2002.
  • Sylvestre, M. 1980. Isolation method for bacterial isolates capable of growth on p-chlorobiphenyl. Appl. Environ. Microbiol. 39:1223–1224.
  • Sylvestre, M. 2012. Prospects for using combined engineered bacterial enzymes and plant 493 systems to rhizoremediate polychlorinated biphenyls. Environ. Microbiol. 15:907–915. doi: 10.1111/1462-2920.12007.
  • Toussaint, J., T. Pham, D. Barriault, and M. Sylvestre. 2012. Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl. Microbiol. Biotechnol. 95:1589–1603. doi: 10.1007/s00253-011-3824-z.
  • Uhlik, O., L. Musilova, J. Ridl, M. Hroudova, C. Vlcek, J. Koubek, M. Holeckova, M. Mackova, and T. Macek. 2013. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil. Appl. Microbiol. Biotechnol. 97:9245–9256. doi: 10.1007/s00253-012-4627-6.
  • Van Aken, B., P. A. Correa, and J. L. Schnoor. 2010. Phytoremediation of polychlorinated biphenyls: New trends and promises. Environ. Sci. Technol. 44:2767–2776. doi: 10.1021/es902514d.
  • Valdés, M., N. Pérez, P. Estrada-de Los Santos, J. Caballero-Mellado, J. Peña-Cabriales, P. Normand, and A. Hirsch. 2005. Non-Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl. Environ. Microbiol. 71:460–466. doi: 10.1128/AEM.71.1.460–466.2005.
  • Vasilyeva, G., and E. Strijakova. 2007. Bioremediation of soils and sediments contaminated by polychlorinated biphenyls. Microbiology 76:639–653. doi: 10.1134/S002626170706001X.
  • Vazquez, P., G. Holguin, M. E. Puente, A. Lopez-Cortes, and Y. Bashan. 2000. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol. Fertil. Soils 30:460–468. doi: 10.1007/s003740050024.
  • Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697–703.
  • Xu, L., Y. Teng, Z. Li, J. Norton, and Y. Luo. 2010. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: The impact of a rhizobial inoculum. Sci. Total Environ. 408:1007–1013. doi: 10.1016/j.scitotenv.t2009.11.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.