831
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Field-scale bioremediation of arsenic-contaminated groundwater using sulfate-reducing bacteria and biogenic pyrite

, , , , , , , , , , & show all
Pages 1-21 | Published online: 26 Oct 2018

References

  • Abraitis, P. K., R. A. D. Pattrick, and D. J. Vaughan. 2004. Variations in the compositional, textural and electrical properties of natural pyrite: a review. Intl. J. Miner. Proc 74(1–4):41–59.
  • Ahmed, K. M., P. Bhattacharya, M. A. Hasan, H. S. Akhter, S. M. M. Alam, M. A. H. Bhuyian, M. B. Imam, A. A. Khan, and O. Sracek. 2004. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Appl. Geochem. 19(2):181–200.
  • Aziz, Z., B. C. Bostick, Y. Zheng, M. R. Huq, M. M. Rahman, K. M. Ahmed, and A. Van Geen. 2017. Evidence of decoupling between arsenic and phosphate in shallow groundwater of Bangladesh and potential implications. Appl. Geochem. 77:167–77.
  • Ben-Dov, E., A. Brenner, and A. Kushmaro. 2007. Quantification of sulfate reducing bacteria in industrial waste water, by real-time polymerase chain reaction (PCR) using dsrA and apsA genes. Microbial Ecology 54(3):439–51.
  • Bethke, C. M. 2008. Geochemical and biogeochemical reaction modeling. New York: Cambridge University Press.
  • Blanchard, M., M. Alfredsson, J. Brodholt, K. Wright, and C. R. A. Catlow. 2007. Arsenic incorporation into FeS2 pyrite and its influence on dissolution: a DFT study. Geochim. Cosmochim. Acta 71(3):624–30.
  • Bostick, B. C., and S. Fendorf. 2003. Arsenic sorption on troilite (FeS) and pyrite (FeS2). Geochim. Cosmochim. Acta 67(5):909–21.
  • Bostick, B. C., S. Fendorf, and G. E. Brown. 2005. In situ analysis of thioarsenite complexes in neutral to alkaline arsenic sulphide solutions. Mineral Mag. 69(05):781–95.
  • Bulut, G., Ü. Yenial, E. Emiroğlu, and A. A. Sirkeci. 2014. Arsenic removal from aqueous solution using pyrite. J. Cleaner Prod. 84:526–32.
  • Burton, E. D., S. G. Johnston, and B. D. Kocar. 2014. Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction. Environ. Sci. Technol. 48(23):13660–7. − 
  • Chapelle, F. H., and D. R. Lovley. 1992. Competitive exclusion of sulfate reduction by Fe(III) reducing bacteria: a mechanism for producing discrete zones of high-iron groundwater. Ground Water 30(1):29–36.
  • Couture, R.-M., C. Gobeil, and A. Tessier. 2010. Arsenic, iron and sulfur co-diagenesis in lake sediments. Geochim. Cosmochim. Acta 74(4):1238–55.
  • Couture, R.-M., J. Rose, N. Kumar, K. Mitchell, D. Wallschlager, and P. Van Cappellen. 2013. Sorption of arsenite, arsenate and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation. Environ. Sci. Technol. 47(11):5652–9.
  • Deditius, A. P., M. Reich, S. E. Kesler, S. Utsunomiya, S. L. Chryssoulis, J. Walshe, and R. C. Ewing. 2014. The coupled geochemistry of Au and as in pyrite from hydrothermal ore deposits. Geochim. Cosmochim. Acta 140 :644–70.
  • Deditius, A. P., S. Utsunomiya, D. Renock, R. C. Ewing, C. V. Ramana, U. Becker, and S. E. Kesler. 2008. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochim. Cosmochim. Acta 72(12):2919–33.
  • DeSisto, S. L., H. E. Jamieson, and M. B. Parsons. 2016. Subsurface variations in arsenic mineralogy and geochemistry following long-term weathering of gold mine tailings. Appl. Geochem. 73:81–97.
  • Farquhar, M. L., J. M. Charnock, F. M. Livens, and D. J. Vaughan. 2002. Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: an X-ray absorption spectroscopy study. Environ. Sci. Technol. 36(8):1757–62.
  • Gallegos, T. J., S. P. Hyun, and K. F. Hayes. 2007. Spectroscopic investigation of the uptake of arsenite from solution by synthetic mackinawite. Environ. Sci. Technol. 41(22):7781–6.
  • Gallegos, T. J., Y.-S. Han, and K. F. Hayes. 2008. Model predictions of realgar precipitation by reaction of as(III) with synthetic mackinawite under anoxic conditions Environ. Sci. Technol. 42(24):9338–43.
  • Gartman, A., and G. W. Luther. 2013. Comparison of pyrite (FeS2) synthesis mechanisms to reproduce natural FeS2 nanoparticles found at hydrothermal vents. Geochim. Cosmochim. Acta 120:447–58.
  • Guerin-Danan, C., C. Andrieux, and O. Szylit. 1999. Storage of intestinal bacteria in samples frozen with glycerol. Microbial Ecol. Health Disease 11(3):180–2.
  • Han, D. S., J. K. Song, B. Batchelor, and A. Abdel-Wahab. 2013. Removal of arsenite(as(III)) and arsenate(as(V)) by synthetic pyrite (FeS2): synthesis, effect of contact time, and sorption/desorption envelopes. J. Colloid Interface Sci. 392:311–8.
  • Han, Y.-S., H. Y. Jeong, A. H. Demond, and K. F. Hayes. 2011. X-ray absorption and photoelectron spectroscopic study of the association of as(III) with nanoparticulate FeS and FeS-coated sand. Water Res. 45(17):5727–35.
  • Horneman, A., A. van Geen, D. V. Kent, P. E. Mathe, Y. Zheng, R. K. Dhar, S. O’Connell, M. A. Hoque, Z. Aziz, M. Shamsudduha., et al. 2004. Decoupling of as and Fe release to Bangladesh groundwater under reducing conditions. Part I: Evidence from sediment profiles. Geochim. Cosmochim. Acta 68(17):3459–73.,
  • Huerta-Diaz, M. A., and J. W. Morse. 1992. Pyritization of trace metals in anoxic marine sediments. Geochim. Cosmochim. Acta 56(7):2681–702.
  • Jeong, H. Y., Y.-S. Han, and K. F. Hayes. 2010. X-ray absorption and x-ray photoelectron spectroscopic study of arsenic mobilization during mackinawite (FeS) oxidation. Environ. Sci. Technol. 44(3):955–61.
  • Jingtai, H., and W. S. Fyfe. 2000. Arsenic removal from water by iron-sulphide minerals. Chin. Sci. Bull. 45(15):1430–4.
  • Keimowitz, A. R., B. J. Mailloux, P. Cole, M. Stute, H. J. Simpson, and S. N. Chillrud. 2007. Laboratory investigations of enhanced sulfate reduction as a groundwater arsenic remediation strategy. Environ. Sci. Technol. 41(19):6718–24.
  • Keimowitz, A. R., H. J. Simpson, M. Stute, S. Datta, S. N. Chillrud, J. Ross, and M. Tsang. 2005. Naturally-occurring arsenic: Mobilization at a landfill in Maine and implications for remediation. Appl. Geochem. 20(11):1985–2002.
  • Kim, E. J., and B. Batchelor. 2009. Macroscopic and X-ray photoelectron spectroscopic investigation of interactions of arsenic with synthesized pyrite. Environ. Sci. Technol. 43(8):2899–904.
  • Kirk, M. F., E. E. Roden, L. J. Crossey, A. J. Brealey, and M. N. Spilde. 2010. Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors. Geochim. Cosmochim. Acta 74(9):2538–55.
  • Kirk, M., T. Holm, J. Park, Q. Jin, R. Sanford, B. Fouke, and C. Bethke. 2004. Bacterial sulfate reduction limits natural arsenic contamination in groundwater. Geology 32(11):953–6.
  • Langner, P., C. Mikutta, and R. Kretzschmar. 2012. Arsenic sequestration by organic sulphur in peat. Nat. Geosci. 5(1):66–73.
  • Langner, P., C. Mikutta, E. Suess, M. A. Marcus, and R. Kretzschmar. 2013. Spatial distribution and speciation of arsenic in peat studied with microfocused X‑ray fluorescence spectrometry and X‑ray absorption spectroscopy. Environ. Sci. Technol. 47(17):9706–14.
  • Le Pape, P., M. Blanchard, J. Brest, J.-C. Boulliard, M. Ikogou, L. Stetten, S. Wang, G. Landrot, and G. Morin. 2017. Arsenic incorporation in pyrite at ambient temperature at both tetrahedral S−1 and octahedral FeII sites: Evidence from EXAFS-DFT analysis. Environ. Sci. Technol. 51(1):150–8.
  • Lee, M.-K., and J. A. Saunders. 2003. Effects of pH on metals precipitation and sorption: Field bioremediation and geochemical modeling approaches. Vadose Zone J. 2(2):177–85.
  • Lee, M.-K., J. A. Saunders, R. T. Wilkin, and S. Mohammad. 2005. Geochemical modeling of arsenic speciation and mobilization: Implications for bioremediation, in advances in arsenic research: Integration of experimental and observational studies and implications for mitigation. Am. Chem. Soc. Symp. Ser. 915:398–413.
  • Lee, M.-K., J. Griffin, J. A. Saunders, Y. Wang, and J. Jean. 2007. Reactive transport of trace elements and isotopes in Alabama coastal plain aquifers. J. Geophys. Res. 112(G2):2156–202.
  • Lee, M.-K., J. A. Saunders, and S. Nichol. 2008. Method and system for forming an in-situ groundwater filter. US Patent 7:341–664.
  • Lee, M.-K., M. Natter, J. Keevan, K. Guerra, J. A. Saunders, A. Uddin, M. Humayun, Y. Wang, and A. R. Keimowitz. 2013. Assessing effects of climate change on biogeochemical cycling of trace metals in alluvial and coastal watersheds. Br. J. Environ. Climate Change 3:44–66.
  • Lowers, H. A., G. N. Breit, A. L. Foster, J. Whitney, J. Yount, M. N. Uddin, and A. A. Muneem. 2007. Arsenic incorporation into authigenic pyrite, bengal basin sediment, Bangladesh. Geochim. Cosmochim. Acta 71(11):2699–717.
  • Mango, H., and P. Ryan. 2015. Source of arsenic-bearing pyrite in southwestern Vermont, USA: Sulfur isotope evidence. Sci. Tot. Environ. 505:1331–9.
  • McArthur, J. M., D. M. Banerjee, K. A. Hudson-Edwards, R. Mishra, R. Purohit, P. Ravenscroft, A. Cronin, R. J. Howarth, A. Chatterjee, T. Talukder, et al. 2004. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic groundwater: the example of West Bengal and its worldwide implications. Appl. Geochem. 19(8):1255–93.,
  • Meng, X., and W. Wang. 1998. Speciation of arsenic by disposable cartridges, third international conference on arsenic exposure and health effects. San Diego, CA, July 12–15.
  • Natter, M., J. Keevan, Y. Wang, A. R. Keimowitz, B. C. Okeke, A. Son, and M.-K. Lee. 2012. Level and degradation of deepwater horizon spilled oil in coastal marsh sediments and pore-Water. Environ. Sci. Technol. 46(11):5744–55. − 
  • Neumann, R. B., K. N. Ashfaque, A. B. M. Badruzzaman, A. Ali, J. K. Shoemaker, and C. F. Harvey. 2010. Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nat. Geosci. 3(1):46–52.
  • Neumann, T., F. Scholz, M. Ostermaier, N. Rausch, and Z. Berner. 2013. Arsenic in framboidal pyrite from recent sediments of a shallow water lagoon of the Baltic Sea. Sedimentology 60 :1389–404.
  • Nordstrom, D. K. 2002. Public health. Worldwide occurrences of arsenic in ground water. Science (New York, N.Y.) 296(5576):2143–5.
  • Nordstrom, D. K., and D. G. Archer. 2003. Arsenic thermodynamic data and environmental geochemistry. In Arsenic in ground water. ed. A. H. Welch and K. G. Stollenwerk. 1–25. Boston: Kluwer Academic Publishers.
  • Nordstrom, D. K., J. Majzlan, and E. Konigsberger. 2014. Thermodynamic properties for arsenic minerals and aqueous species. Rev. Min. Geochem. 79(1):217–55.
  • O'Day, P. A. 2006. Chemistry and mineralogy of arsenic. Elements 2(2):77–84.
  • O'Day, P. A., D. Vlassopoulos, R. Root, and N. Rivera. 2004. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl. Acad. Sci. 101(38):13703–8.
  • Omoregie, E. O., R.-M. Couture, P. Van Cappellen, C. L. Corkhill, J. M. Charnock, D. A. Polya, D. Vaughan, K. Vanbroekhoven, and J. R. Lloyd. 2013. Arsenic bioremediation by biogenic iron oxides and sulfides. Appl. Environ. Microbiol. 79(14):4325–35.
  • Onstott, T. C., E. Chan, M. L. Polizzotto, J. Lanzon, and M. F. DeFlaun. 2011. Precipitation of arsenic under sulfate reducing conditions and subsequent leaching under aerobic conditions. Appl. Geochem. 26(3):269–85.
  • Pi, K., Y. Wang, X. Xie, T. Ma, Y. Liu, C. Su, Y. Zhu, and Z. Wang. 2017. Remediation of arsenic-contaminated groundwater by in-situ stimulating biogenic precipitation of iron sulfides. Water Res. 109:337–46.
  • Rieder, M., J. C. Crelling, O. Šustai, M. Drábek, Z. Weiss, and M. Klementová. 2007. Arsenic in iron disulfides in a brown coal from the North bohemian basin, Czech Republic. Intl. J. Coal. Geol. 71(2-3):115–21.
  • Rittle, K. A., J. I. Drever, and P. J. S. Colberg. 1995. Precipitation of arsenic during bacterial sulfate reduction. Geomicrobiol. J. 13(1):1–11.
  • Saunders, J. A., A. H. Hofstra, R. J. Goldfarb, and M. H. Reed. 2014. Geochemistry of Hydrothermal Gold Deposits. In Treatise on geochemistry. ed. H. D. Holland and K. K. Turekian. 383–424. 2nd ed. Oxford: Elsevier.
  • Saunders, J. A., B. E. Pivetz, N. Voorhies, and R. T. Wilkin. 2016. Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites. J. Environ. Manage. 183:67–83.
  • Saunders, J. A. 1996. Situ bioremediation of contaminated groundwater. US Patent 5833855.
  • Saunders, J. A., M. A. Pritchett, and R. B. Cook. 1997. Geochemistry of biogenic pyrite and ferromanganese stream coatings: a bacterial connection? Geomicrobiol. J. 14(3):203–17.
  • Saunders, J. A., M.-K. Lee, L. A. Wolf, C. M. Morton, Y. Feng, I. Thomson, and S. Park. 2005. Geochemical, microbiological, and geophysical assessments of anaerobic immobilization of heavy metals. Bioremed. J. 9(1):33–48.
  • Saunders, J. A., M.-K. Lee, M. Shamsudduha, P. Dhakal, A. Uddin, M. T. Chowdury, and K. M. Ahmed. 2008. Geochemistry and mineralogy of arsenic under anaerobic conditions. Appl. Geochem. 23(11):3205–14.
  • Saunders, J. A., R. B. Cook, R. C. Thomas, and D. E. Crowe. 1996. Coprecipitation of trace metals in biogenic pyrite: Implications for enhanced intrinsic bioremediation; Bottrell, S.H. (Ed.), Proceedings of the Fourth International Symposium on the Geochemistry of the Earth's Surface: Short Papers, International Association of Geochemists and Cosmochemists (IAGC), Ilkley, Yorkshire, England, July 22–28. UK: Department of Earth Sciences, University of Leeds.
  • Schmidt, W., and M. W. Clark. 1980. Geology of Bay county. Florida: Florida Geological Survey Bulletin 57, 96 p.
  • Shamsudduha, M., A. Uddin, J. A. Saunders, and M.-K. Lee. 2008. Quaternary stratigraphy, sediment characteristics and geochemistry of arsenic-contaminated alluvial aquifers in the ganges–brahmaputra floodplain in Central Bangladesh. J.Contaminant. Hydrol. 99(1-4):112–36.
  • Smedley, P. L., and D. G. Kinniburgh. 2002. A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem 17(5):517–68.
  • Starnes, P. 2015. Hydrogeology and Geochemistry of Arsenic Contaminated Shallow Alluvial Aquifers in Florida and Alabama. M.S. thesis, Auburn University.
  • Stuckey, J. W., M. V. Schaefer, B. D. Kocar, J. Dittmar, J. Lezama Pacheco, S. G. Benner, and S. Fendorf. 2015. Peat formation concentrates arsenic within sediment deposits of the Mekong Delta. Geochim. Cosmochim. Acta 149 :190–205.
  • Sun, J., A. N. Quicksall, S. N. Chillrud, B. J. Mailloux, and B. C. Bostick. 2016. Arsenic mobilization from sediments in microcosms under sulfate reduction. Chemosphere 153:254–61.
  • Thode, H. G., H. Kleerekoper, and E. McElcheran. 1951. Isotope Fraction. Bacteria Reduc. Sulfate. Res. (London). College Park, USA: Department of Chemistry, University of Maryland. 4:581–582.
  • Wilkin, R. T., and R. G. Ford. 2006. Arsenic solid-phase partitioning in reducing sediments of a contaminated wetland. Chem. Geol. 228(1–3):156–74.
  • Wilkin, R. T., D. Wallschlager, and R. G. Ford. 2003. Speciation of arsenic in sulfidic waters. Geochem. Trans. 4(1):1–7.
  • Wolthers, M., I. B. Butler, and D. Rickard. 2007. Influence of arsenic on iron sulfide transformation. Chem. Geol. 236(3–4):217–27.
  • Wolthers, M., L. Charlet, C. H. van Der Weijden, P. R. van der Linde, and D. Rickard. 2005. Arsenic mobility in the ambient sulfidic environment: Sorption of arsenic(V) and arsenic(III) onto disordered mackinawite. Geochim. Cosmochim. Acta 69(14):3483–92.
  • Yeskis, D., and B. Zavala. 2015. Ground-Water sampling guidelines for superfund and RCRA project managers. U.S. Environmental protection agency, technical support report. Hoboken, New Jersey, USA: Wiley Blackwell.
  • Zouboulis, A. I., K. A. Kydros, and K. A. Matis. 1993. Arsenic(III) and arsenic(V) removal from solutions by pyrite fines. Separat. Sci. Tech. 28(15–16):2449–63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.