129
Views
0
CrossRef citations to date
0
Altmetric
Articles

Adsorption of phosphates from water by two polymer-silicate composites

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 231-250 | Published online: 27 Aug 2020

References

  • Anirudhan, T. S., and P. Senan. 2011. Adsorption of phosphate ions from water using a novel cellulose-based adsorbent. Chemistry and Ecology 27 (2):147–64. doi: 10.1080/02757540.2010.547487.
  • Baral, S. S., N. Das, G. Roy Chaudhury, and S. N. Das. 2009. A preliminary study on the adsorptive removal of Cr(VI) using seaweed, Hydrilla verticillata. Journal of Hazardous Materials 171 (1-3):358–69. doi: 10.1016/j.jhazmat.2009.06.011.
  • Bhardwaj, D., P. Sharma, M. Sharma, and R. Tomar. 2014. Removal and slow release studies of phosphate on surfactant loaded hydrothermally synthesized silicate nanoparticles. Journal of the Taiwan Institute of Chemical Engineers 45 (5):2649–58. doi: 10.1016/j.jtice.2014.07.010.
  • Blanchard, G., M. Maunaye, and G. Martin. 1984. Removal of heavy metals from waters by means of natural zeolites. Water Research 18 (12):1501–7. doi: 10.1016/0043-1354(84)90124-6.
  • Caravelli, A. H., E. M. Contreras, and N. E. Zaritzky. 2010. Phosphorous removal in batch systems using ferric chloride in the presence of activated sludges. Journal of Hazardous Materials 177 (1-3):199–208. doi: 10.1016/j.jhazmat.2009.12.018.
  • Chan, L. W., Y. Jin, and P. W. S. Heng. 2002. Cross-linking mechanisms of calcium and zinc in production of alginate microspheres. International Journal of Pharmaceutics 242 (1-2):255–8. doi: 10.1016/S0378-5173(02)00169-2.
  • Chathuranga, P. D., N. Priyantha, S. S. Iqbal, and M. M. Iqbal. 2013. Biosorption of Cr (III) and Cr (VI) species from aqueous solution by Cabomba caroliniana: Kinetic and equilibrium study. Environmental Earth Sciences 70 (2):661–71.
  • Daniel, T. C., A. N. Sharpley, and J. L. Lemunyon. 1998. Agricultural phosphorus and eutrophication: A symposium overview. Journal of Environmental Quality 27 (2):251–7. doi: 10.2134/jeq1998.00472425002700020002x.
  • Das, J., B. S. Patra, N. Baliarsingh, and K. M. Parida. 2006. Adsorption of phosphate by layered double hydroxides in aqueous solutions. Applied Clay Science 32 (3-4):252–60. doi: 10.1016/j.clay.2006.02.005.
  • Dissanayake, D. M. R. E. A., W. M. K. E. H. Wijesinghe, S. S. Iqbal, N. Priyantha, and M. C. M. Iqbal. 2016. Fuchsine biosorption using Asplenium nidus biosorbent—A mechanism using kinetic and isotherm data. RSC Advances 6 (101):98682–92. doi: 10.1039/C6RA19011A.
  • Du, W., Y. Li, X. Xu, Y. Shang, B. Gao, and Q. Yue. 2019. Selective removal of phosphate by dual Zr and La hydroxide/cellulose-based bio-composites. Journal of Colloid and Interface Science 533:692–9. doi: 10.1016/j.jcis.2018.09.002.
  • Dubinin, M. M., and L. V. Radushkevich. 1947. Equation of the characteristic curve of activated charcoal. Chemisches Zentralblatt 1 (1):875.
  • Duckworth, M., and W. Yaphe. 1971. The structure of agar: Part I. Fractionation of a complex mixture of polysaccharides. Carbohydrate Research 16 (1):189–97. doi: 10.1016/S0008-6215(00)86113-3.
  • Fierro, S., M. del Pilar Sánchez-Saavedra, and C. Copalcua. 2008. Nitrate and phosphate removal by chitosan immobilized Scenedesmus. Bioresource Technology 99 (5):1274–9. doi: 10.1016/j.biortech.2007.02.043.
  • Freundlich, H. M. F. 1906. Over the adsorption in solution. Journal of Physical Chemistry. 57 (385471):1100–7.
  • Gilbert, N. 2009. Environment: The disappearing nutrient. Nature News 461 (7265):716–8. doi: 10.1038/461716a.
  • Goscianska, J., M. Ptaszkowska-Koniarz, M. Frankowski, M. Franus, R. Panek, and W. Franus. 2018. Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash. Journal of Colloid and Interface Science 513:72–81. doi: 10.1016/j.jcis.2017.11.003.
  • Gu, W., Q. Xie, M. Xing, and D. Wu. 2017. Enhanced adsorption of phosphate onto zinc ferrite by incorporating cerium. Chemical Engineering Research and Design 117:706–14. doi: 10.1016/j.cherd.2016.11.026.
  • He, J., Y. Xu, W. Wang, B. Hu, Z. Wang, X. Yang, Y. Wang, and L. Yang. 2020. Ce (III) nanocomposites by partial thermal decomposition of Ce-MOF for effective phosphate adsorption in a wide pH range. Chemical Engineering Journal 379:122431. doi: 10.1016/j.cej.2019.122431.
  • Ho, Y.-S. 2006. Review of second-order models for adsorption systems. Journal of Hazardous Materials 136 (3):681–9. doi: 10.1016/j.jhazmat.2005.12.043.
  • Jang, J., and D. S. Lee. 2019. Effective phosphorus removal using chitosan/Ca-organically modified montmorillonite beads in batch and fixed-bed column studies. Journal of Hazardous Materials 375:9–18. doi: 10.1016/j.jhazmat.2019.04.070.
  • Jeppu, G. P., and T. P. Clement. 2012. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. Journal of Contaminant Hydrology 129:46–53.
  • Jiang, H., P. Chen, S. Luo, X. Tu, Q. Cao, and M. Shu. 2013. Synthesis of novel nanocomposite Fe3O4/ZrO2/chitosan and its application for removal of nitrate and phosphate. Applied Surface Science 284:942–9. doi: 10.1016/j.apsusc.2013.04.013.
  • Lagergren, S. K. 1898. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39.
  • Lahaye, M., and C. Rochas. 1991a. Chemical structure and physico-chemical properties of agar. In International Workshop on Gelidium. Developments in Hydrobiology, ed. J. A. Juanes, B. Santelices, and J. L. McLachlan, vol 68. Dordrecht: Springer. doi: 10.1007/978-94-011-3610-5_13.
  • Lahaye, M., and C. Rochas. 1991b. Chemical structure and physico-chemical properties of agar. Hydrobiologia 221 (1):137–48. doi: 10.1007/BF00028370.
  • Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40 (9):1361–403. doi: 10.1021/ja02242a004.
  • Lee, K. Y., and D. J. Mooney. 2012. Alginate: Properties and biomedical applications. Progress in Polymer Science 37 (1):106–26. doi: 10.1016/j.progpolymsci.2011.06.003.
  • Li, M., J. Liu, Y. Xu, and G. Qian. 2016. Phosphate adsorption on metal oxides and metal hydroxides: A comparative review. Environmental Reviews 24 (3):319–32. doi: 10.1139/er-2015-0080.
  • Li, Y., C. Liu, Z. Luan, X. Peng, C. Zhu, Z. Chen, Z. Zhang, J. Fan, and Z. Jia. 2006. Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. Journal of Hazardous Materials 137 (1):374–83. doi: 10.1016/j.jhazmat.2006.02.011.
  • Lin, J., Y. Zhan, H. Wang, M. Chu, C. Wang, Y. He, and X. Wang. 2017. Effect of calcium ion on phosphate adsorption onto hydrous zirconium oxide. Chemical Engineering Journal 309:118–29. doi: 10.1016/j.cej.2016.10.001.
  • Liu, B., Y. Yu, Q. Han, S. Lou, L. Zhang, and W. Zhang. 2020. Fast and efficient phosphate removal on lanthanum-chitosan composite synthesized by controlling the amount of cross-linking agent. International Journal of Biological Macromolecules 157:247–58. doi: 10.1016/j.ijbiomac.2020.04.159.
  • Liu, H., W. Guo, Z. Liu, X. Li, and R. Wang. 2016. Effective adsorption of phosphate from aqueous solution by La-based metal–organic frameworks. RSC Advances 6 (107):105282–7. doi: 10.1039/C6RA24568D.
  • Lu, Y., and E. Wilkins. 1996. Heavy metal removal by caustic-treated yeast immobilized in alginate. Journal of Hazardous Materials 49 (2-3):165–79. doi: 10.1016/0304-3894(96)01754-2.
  • Luengo, C., M. Brigante, J. Antelo, and M. Avena. 2006. Kinetics of phosphate adsorption on goethite: Comparing batch adsorption and ATR-IR measurements. Journal of Colloid and Interface Science 300 (2):511–8. doi: 10.1016/j.jcis.2006.04.015.
  • Luo, X., X. Wang, S. Bao, X. Liu, W. Zhang, and T. Fang. 2016. Adsorption of phosphate in water using one-step synthesized zirconium-loaded reduced graphene oxide. Scientific Reports 6:39108. doi: 10.1038/srep39108.
  • Mao, Y., and Q. Yue. 2016. Kinetic modeling of phosphate adsorption by preformed and in situ formed hydrous ferric oxides at circumneutral pH. Scientific Reports 6 (1):35292. doi: 10.1038/srep35292.
  • Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31–6. doi: 10.1016/S0003-2670(00)88444-5.
  • Oehmen, A., P. C. Lemos, G. Carvalho, Z. Yuan, J. Keller, L. L. Blackall, and M. A. M. Reis. 2007. Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Research 41 (11):2271–300. doi: 10.1016/j.watres.2007.02.030.
  • Ogata, F., E. Ueta, M. Toda, M. Otani, and N. Kawasaki. 2017. Adsorption of phosphate ions from an aqueous solution by calcined nickel-cobalt binary hydroxide. Water Science and Technology 75 (1-2):94–105. doi: 10.2166/wst.2016.492.
  • Pan, M., X. Lin, J. Xie, and X. Huang. 2017. Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites. RSC Advances 7 (8):4492–500. doi: 10.1039/C6RA26802A.
  • Parsons, I. 2012. Feldspars and their reactions. Vol. 421. Dordrecht, The Netherlands: Kluwer Academic Publishers.
  • Pavia, D. L., G. M. Lampman, G. S. Kriz, and J. A. Vyvyan. 2008. Introduction to spectroscopy. United States of America: Cengage Learning.
  • Qiu, H., L. Lv, B-c Pan, Q-j Zhang, W-m Zhang, and Q-x Zhang. 2009. Critical review in adsorption kinetic models. Journal of Zhejiang University-Science A 10 (5):716–24. doi: 10.1631/jzus.A0820524.
  • Rodrigues, L. A., and M. L. C. P. da Silva. 2010. Adsorption kinetic, thermodynamic and desorption studies of phosphate onto hydrous niobium oxide prepared by reverse microemulsion method. Adsorption 16 (3):173–81. doi: 10.1007/s10450-010-9220-7.
  • Rosemarin, A. 2004. The precarious geopolitics of phosphorous. Down to Earth 30:27–34.
  • Selim, A. Q., L. Sellaoui, and M. Mobarak. 2019. Statistical physics modeling of phosphate adsorption onto chemically modified carbonaceous clay. Journal of Molecular Liquids 279:94–107. doi: 10.1016/j.molliq.2019.01.100.
  • Silverstein, R. M., and G. C. Bassler. 1962. Spectrometric identification of organic compounds. Journal of Chemical Education 39 (11):546. doi: 10.1021/ed039p546.
  • Singh, P., S. Kumar Singh, J. Bajpai, A. Kumar Bajpai, and R. B. Shrivastava. 2014. Iron crosslinked alginate as novel nanosorbents for removal of arsenic ions and bacteriological contamination from water. Journal of Materials Research and Technology 3 (3):195–202. doi: 10.1016/j.jmrt.2014.03.005.
  • Siwek, H., A. Bartkowiak, M. Włodarczyk, and K. Sobecka. 2016. Removal of phosphate from aqueous solution using alginate/iron (III) chloride capsules: A laboratory study. Water, Air, and Soil Pollution 227 (11):427. doi: 10.1007/s11270-016-3128-0.
  • Soares, J. P., J. E. Santos, G. O. Chierice, and E. T. G. Cavalheiro. 2004. Thermal behavior of alginic acid and its sodium salt. Eclética Química 29 (2):57–64. doi: 10.1590/S0100-46702004000200009.
  • Tian, S., P. Jiang, P. Ning, and Y. Su. 2009. Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite. Chemical Engineering Journal 151 (1-3):141–8. doi: 10.1016/j.cej.2009.02.006.
  • Tran, H. N., S.-J. You, and H.-P. Chao. 2016. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. Journal of Environmental Chemical Engineering 4 (3):2671–82. doi: 10.1016/j.jece.2016.05.009.
  • Wang, N., J. Feng, J. Chen, J. Wang, and W. Yan. 2017. Adsorption mechanism of phosphate by polyaniline/TiO2 composite from wastewater. Chemical Engineering Journal 316:33–40. doi: 10.1016/j.cej.2017.01.066.
  • Wang, S., Y. Boyjoo, A. Choueib, and Z. H. Zhu. 2005. Removal of dyes from aqueous solution using fly ash and red mud. Water Research 39 (1):129–38. doi: 10.1016/j.watres.2004.09.011.
  • Wang, S., and H. Wu. 2006. Environmental-benign utilisation of fly ash as low-cost adsorbents. Journal of Hazardous Materials 136 (3):482–501. doi: 10.1016/j.jhazmat.2006.01.067.
  • Wang, W., C. Ma, Y. Zhang, S. Yang, Y. Shao, and X. Wang. 2016. Phosphate adsorption performance of a novel filter substrate made from drinking water treatment residuals. Journal of Environmental Sciences (China) 45:191–9. doi: 10.1016/j.jes.2016.01.010.
  • Wang, X., F. Liu, W. Tan, W. Li, X. Feng, and D. L. Sparks. 2013. Characteristics of phosphate adsorption-desorption onto ferrihydrite: Comparison with well-crystalline Fe (hydr) oxides. Soil Science 178 (1):1–11. doi: 10.1097/SS.0b013e31828683f8.
  • Weber, W. J., and J. C. Morris. 1963. Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division 89 (2):31–60.
  • Xiong, W., J. Tong, Z. Yang, G. Zeng, Y. Zhou, D. Wang, P. Song, R. Xu, C. Zhang, and M. Cheng. 2017. Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: Performance and mechanism. Journal of Colloid and Interface Science 493:17–23. doi: 10.1016/j.jcis.2017.01.024.
  • Yao, Y., B. Gao, M. Inyang, A. R. Zimmerman, X. Cao, P. Pullammanappallil, and L. Yang. 2011. Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresource Technology 102 (10):6273–8.
  • Yazdani, M., N. Mohammad Mahmoodi, M. Arami, and H. Bahrami. 2012. Isotherm, kinetic, and thermodynamic of cationic dye removal from binary system by Feldspar. Separation Science and Technology 47 (11):1660–72. doi: 10.1080/01496395.2011.654169.
  • Ye, J., X. Cong, P. Zhang, E. Hoffmann, G. Zeng, Y. Liu, W. Fang, Y. Wu, and H. Zhang. 2015. Interaction between phosphate and acid-activated neutralized red mud during adsorption process. Applied Surface Science 356:128–34. doi: 10.1016/j.apsusc.2015.08.053.
  • Yoon, H.-S., K. W. Chung, C.-J. Kim, J.-H. Kim, H.-S. Lee, S.-J. Kim, S.-I. Lee, S.-J. Yoo, and B.-C. Lim. 2018. Characteristics of phosphate adsorption on ferric hydroxide synthesized from a Fe2(SO4)3 aqueous solution discharged from a hydrometallurgical process. Korean Journal of Chemical Engineering 35 (2):470–8. doi: 10.1007/s11814-017-0287-7.
  • Zhang, G., H. Liu, R. Liu, and J. Qu. 2009. Removal of phosphate from water by a Fe-Mn binary oxide adsorbent. Journal of Colloid and Interface Science 335 (2):168–74. doi: 10.1016/j.jcis.2009.03.019.
  • Zhang, Y.-h., F.-q. Liu, C.-q. Zhu, X.-p. Zhang, M.-m. Wei, F.-h. Wang, C. Ling, and A.-m. Li. 2017. Multifold enhanced synergistic removal of nickel and phosphate by a (N,Fe)-dual-functional bio-sorbent: Mechanism and application. Journal of Hazardous Materials 329:290–8. doi: 10.1016/j.jhazmat.2017.01.054.
  • Zhao, T., and T. Feng. 2016. Application of modified chitosan microspheres for nitrate and phosphate adsorption from aqueous solution. RSC Advances 6 (93):90878–86. doi: 10.1039/C6RA17474D.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.