386
Views
4
CrossRef citations to date
0
Altmetric
Note

Dichlorodiphenyltrichloroethane (DDT) degradation by Streptomyces sp. isolated from DDT contaminated soil

, , &
Pages 148-158 | Published online: 05 Feb 2021

References

  • Ahad, K., A. Mohammad, H. Khan, I. Ahmad, and Y. Hayat. 2010. Monitoring results for organochlorine pesticides in soil and water from selected obsolete pesticide stores in Pakistan [journal article. Environmental Monitoring and Assessment 166 (1–4):191–9. doi: 10.1007/s10661-009-0995-5.
  • Aislabie, J. M., N. K. Richards, and H. L. Boul. 1997. Microbial degradation of DDT and its residues—A review. New Zealand Journal of Agricultural Research 40 (2):269–82. doi: 10.1080/00288233.1997.9513247.
  • Bajaj, A., S. Mayilraj, M. K. R. Mudiam, D. K. Patel, and N. Manickam. 2014. Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT). Bioresource Technology 167:398–406. doi: 10.1016/j.biortech.2014.06.007.
  • Barragán-Huerta, B. E., C. Costa-Pérez, J. Peralta-Cruz, J. Barrera-Cortés, F. Esparza-García, and R. Rodríguez-Vázquez. 2007. Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee. International Biodeterioration & Biodegradation 59 (3):239–44. doi: 10.1016/j.ibiod.2006.11.001.
  • Bidlan, R., and H. K. Manonmani. 2002. Aerobic degradation of dichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P. Process Biochemistry 38 (1):49–56. doi: 10.1016/S0032-9592(02)00066-3.
  • Cutright, T., and Z. Erdem. 2012. Overview of the bioremediation and the degradation pathways of DDT.
  • Dalton, H., and D. I. Stirling. 1982. Co-metabolism. Philosophical Transactions of the Royal Society B 297:481–96.
  • Egorova, D. O., V. V. Farafonova, E. A. Shestakova, D. N. Andreyev, A. S. Maksimov, A. N. Vasyanin, S. A. Buzmakov, and E. G. Plotnikova. 2017. Bioremediation of soil contaminated by dichlorodiphenyltrichloroethane with the use of aerobic strain Rhodococcus wratislaviensis Ch628 [journal article]. Eurasian Soil Science 50 (10):1217–24. doi: 10.1134/S1064229317100015.
  • Fang, H., B. Dong, H. Yan, F. Tang, and Y. Yu. 2010. Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. Journal of Hazardous Materials 184 (1–3):281–9. doi: 10.1016/j.jhazmat.2010.08.034.
  • George, W. O., D. V. Hassid, and J. Phillips. 1971. Mass spectra of chloro-substituted benzophenones. Organic Mass Spectrometry 5 (5):605–13. doi: 10.1002/oms.1210050511.
  • Jan, M. R., J. Shah, M. A. Khawaja, and K. Gul. 2009. DDT residue in soil and water in and around abandoned DDT manufacturing factory [journal article. Environmental Monitoring and Assessment 155 (1–4):31–8. doi: 10.1007/s10661-008-0415-2.
  • Jensen, S., A. Johnels, M. Olsson, and G. Otterlind. 1969. DDT and PCB in marine animals from Swedish waters. Nature 223 (5207):753–4. doi: 10.1038/223753a0.
  • Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules. Mammalian Protein Metabolism 3 (21):132.
  • Katayama, A., Y. Fujimura, and S. Kuwatsuka. 1993. Microbial degradation of DDT at extremely low concentrations. Journal of Pesticide Science 18 (4):353–9. doi: 10.1584/jpestics.18.4_353.
  • Kelce, W. R., C. R. Stone, S. C. Laws, L. E. Gray, J. A. Kemppainen, and E. M. Wilson. 1995. Persistent DDT metabolite p,p′-DDE is a potent androgen receptor antagonist. Nature 375 (6532):581–5. doi: 10.1038/375581a0.
  • Khwaja, M. A. 2008. POPs hot spot: Soil contamination due to a demolished dichlorodiphenyltrichloroethane (persistent organic pollutant) Factory, Nowshera, NWFP, Pakistan. Annals of the New York Academy of Sciences 1140 (1):113–20. doi: 10.1196/annals.1454.011.
  • Khwaja, M. A., M. R. Jan, and K. Gul. 2006. Physical verification and study of contamination of soil and water in and surrounding areas of abandoned persistent organic pollutant (DDT) factory in North West Frontier Province (NWFP) Pakistan. Sustainable Development Policy Institute SDPI, Islamabad, Pakistan.54.
  • Kujawa, M. 1991. DDT and its derivatives - environmental aspects. Environmental health criteria 83.98 Seiten, 2 Abb., 7 Tab., World Health Organization, Geneva 1989. Food/Nahrung 35 (1):114. doi: 10.1002/food.19910350141.
  • Lal, R., and D. M. Saxena. 1982. Accumulation, metabolism, and effects of organochlorine insecticides on microorganisms. Microbiological Reviews 46 (1):95–127. doi: 10.1128/MMBR.46.1.95-127.1982.
  • Linstrom, P., and W. Mallard. 2005. NIST Chemistry WebBook. NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD. 20899.
  • Lovecka, P., I. Pacovska, P. Stursa, B. Vrchotova, L. Kochankova, and K. Demnerova. 2015. Organochlorinated pesticide degrading microorganisms isolated from contaminated soil. New Biotechnology 32 (1):26–31. doi: 10.1016/j.nbt.2014.07.003.
  • Mansouri, A., C. Abbes, R. Ben Mouhoub, S. Ben Hassine, and A. Landoulsi. 2019. Enhancement of mixture pollutant biodegradation efficiency using a bacterial consortium under static magnetic field. Plos One 14 (1):e0208431. doi: 10.1371/journal.pone.0208431.
  • Mansouri, A., M. Cregut, C. Abbes, M.-J. Durand, A. Landoulsi, and G. Thouand. 2017. The environmental issues of DDT pollution and bioremediation: A multidisciplinary review. Applied Biochemistry and Biotechnology 181 (1):309–339. doi: 10.1007/s12010-016-2214-5.
  • Mc Cullar, M. V., S.-C. Koh, and D. D. Focht. 2002. The use of mutants to discern the degradation pathway of 3,4′-dichlorobiphenyl in Pseudomonas acidovorans M3GY. FEMS Microbiology Ecology 42 (1):81–87. doi: 10.1111/j.1574-6941.2002.tb00997.x.
  • Muturi, E. J., R. K. Donthu, C. J. Fields, I. K. Moise, and C.-H. Kim. 2017. Effect of pesticides on microbial communities in container aquatic habitats. Scientific Reports 7 (1):44565. doi: 10.1038/srep44565.
  • Nadeau, L. J., F. M. Menn, A. Breen, and G. S. Sayler. 1994. Aerobic degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by Alcaligenes eutrophus A5. Applied and Environmental Microbiology 60 (1):51–55. doi: 10.1128/AEM.60.1.51-55.1994.
  • Nadeau, L. J., G. S. Sayler, and J. C. Spain. 1998. Oxidation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by Alcaligenes eutrophus A5. Archives of Microbiology 171 (1):44–49. doi: 10.1007/s002030050676.
  • Pan, X., D. Lin, Y. Zheng, Q. Zhang, Y. Yin, L. Cai, H. Fang, and Y. Yu. 2016. Biodegradation of DDT by stenotrophomonas sp. DDT-1: Characterization and genome functional analysis. Scientific Reports 6:21332–21332. doi: 10.1038/srep21332.
  • Pan, X., T. Xu, H. Xu, H. Fang, and Y. Yu. 2017. Characterization and genome functional analysis of the DDT-degrading bacterium Ochrobactrum sp. DDT-2. The Science of the Total Environment 592:593–599. doi: 10.1016/j.scitotenv.2017.03.052.
  • Qu, J., Y. Xu, G.-M. Ai, Y. Liu, and Z.-P. Liu. 2015. Novel Chryseobacterium sp. PYR2 degrades various organochlorine pesticides (OCPs) and achieves enhancing removal and complete degradation of DDT in highly contaminated soil. Journal of Environmental Management 161:350–357. doi: 10.1016/j.jenvman.2015.07.025.
  • Rigét, F., A. Bignert, B. Braune, M. Dam, R. Dietz, M. Evans, N. Green, H. Gunnlaugsdóttir, K. S. Hoydal, J. Kucklick, et al. 2019. Temporal trends of persistent organic pollutants in Arctic marine and freshwater biota. Science of the Total Environment 649:99–110. doi: 10.1016/j.scitotenv.2018.08.268.
  • Saitou, N., and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4 (4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454.
  • Sohail, M., S. Eqani, J. Podgorski, A. K. Bhowmik, A. Mahmood, N. Ali, T. Sabo-Attwood, H. Bokhari, and H. Shen. 2018. Persistent organic pollutant emission via dust deposition throughout Pakistan: Spatial patterns, regional cycling and their implication for human health risks. Science of the Total Environment 618:829–837. doi: 10.1016/j.scitotenv.2017.08.224.
  • Stanley, J., and G. Preetha. 2016. Pesticide Toxicity to Microorganisms: Exposure, Toxicity and Risk Assessment Methodologies. Pesticide Toxicity to Non-target Organisms: Exposure, Toxicity and Risk Assessment Methodologies. Dordrecht: Springer Netherlands; 351–410.
  • Stockholm Convention. 2001. All POPs listed in the Stockholm Convention. [accessed]. http://www.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx.
  • Thomas, J. E., L.-T. Ou, and A. Al-Agely. 2008. DDE remediation and degradation. Reviews of environmental contamination and toxicology. New York: Springer; 55–69.
  • Torres-Arreola, L., L. Lopez-Carrillo, L. Torres-Sanchez, M. Cebrian, C. Rueda, R. Reyes, and M. Lopez-Cervantes. 1999. Levels of dichloro-diphenyl-trichloroethane (DDT) metabolites in maternal milk and their determinant factors. Archives of Environmental Health 54 (2):124–129. doi: 10.1080/00039899909602247.
  • Ullah, S., P. Faiz, M. Aamir, M. A. Sabir, and Q. Mahmood. 2019. Occurrence and spatio-vertical distribution of DDT in soils of abandoned DDT factory area, Amangarh, Pakistan [journal article. SN Applied Sciences 1 (8):817. doi: 10.1007/s42452-019-0830-8.
  • van den Berg, H., G. Manuweera, and F. Konradsen. 2017. Global trends in the production and use of DDT for control of malaria and other vector-borne diseases. Malaria Journal 16 (1):401–401. eng. doi: 10.1186/s12936-017-2050-2.
  • Vecchiato, M., E. Argiriadis, S. Zambon, C. Barbante, G. Toscano, A. Gambaro, and R. Piazza. 2015. Persistent organic pollutants (POPs) in Antarctica: Occurrence in continental and coastal surface snow. Microchemical Journal 119:75–82. doi: 10.1016/j.microc.2014.10.010.
  • Wang, B., W. Liu, X. Liu, A. E. Franks, Y. Teng, and Y. Luo. 2017. Comparative analysis of microbial communities during enrichment and isolation of DDT-degrading bacteria by culture-dependent and -independent methods. The Science of the Total Environment 590–591:297–303. doi: 10.1016/j.scitotenv.2017.03.004.
  • Wang, G.-L., M. Bi, B. Liang, J.-D. Jiang, and S.-P. Li. 2011. Pseudoxanthomonas jiangsuensis sp. Nov., a DDT-Degrading Bacterium Isolated from a Long-Term DDT-Polluted Soil [journal article. Current Microbiology 62 (6):1760–1766. ]. doi: 10.1007/s00284-011-9925-1.
  • Wang, Y., C. Wang, A. Li, and J. Gao. 2015. Biodegradation of pentachloronitrobenzene by Arthrobacter nicotianae DH19. Letters in Applied Microbiology 61 (4):403–410. doi: 10.1111/lam.12476.
  • Xie, H., L. Zhu, Q. Xu, J. Wang, W. Liu, J. Jiang, and Y. Meng. 2011. Isolation and degradation ability of the DDT-degrading bacterial strain KK [journal article. Environmental Earth Sciences 62 (1):93–99. ]. doi: 10.1007/s12665-010-0500-z.
  • Younas, A., I. Hilber, S. Ur Rehman, M. Khwaja, and T. D. Bucheli. 2013. Former DDT factory in Pakistan revisited for remediation: Severe DDT concentrations in soils and plants from within the area. Environmental Science and Pollution Research International 20 (4):1966–1976. doi: 10.1007/s11356-012-1317-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.