172
Views
1
CrossRef citations to date
0
Altmetric
Notes

Endophytic Serratia sp. PW7 shifts bacterial endophytes in wheat (Triticum aestivum L.) to reduce pyrene contamination

, , , &
Pages 292-304 | Published online: 27 Sep 2021

References

  • Alkorta, I., and C. Garbisu. 2001. Phytoremediation of organic contaminants in soils. Bioresource Technology 79 (3):273–6. doi: 10.1016/S0960-8524(01)00016-5.
  • Banik, A., G. K. Dash, P. Swain, U. Kumar, S. K. Mukhopadhyay, and T. K. Dangar. 2019. Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2 (MCC 3432) can increase rice yield under green house and field condition. Microbiological Research 219:56–65. doi: 10.1016/j.micres.2018.11.004.
  • Baoune, H., A. O. E. Hadj-Khelil, G. Pucci, P. Sineli, L. Loucif, and M. A. Polti. 2018. Petroleum degradation by endophytic Streptomyces spp. isolated from plants grown in contaminated soil of southern Algeria. Ecotoxicology and Environmental Safety 147:602–9. doi: 10.1016/j.ecoenv.2017.09.013.
  • Baoune, H., J. D. Aparicio, A. Acuña, A. O. E. Hadj-Khelil, L. Sanchez, M. A. Polti, and A. Alvarez. 2019. Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils. Ecotoxicology and Environmental Safety 184:109591. doi: 10.1016/j.ecoenv.2019.109591.
  • Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62 (3):293–300. doi: 10.1128/jb.62.3.293-300.1951..
  • Brakstad, O. G., P. S. Daling, L. G. Faksness, I. K. Almas, S. H. Vang, L. Syslak, and F. Leirvik. 2014. Depletion and biodegradation of hydrocarbons in dispersions and emulsions of the Macondo 252 oil generated in an oil-on-seawater mesocosm flume basin. Marine Pollution Bulletin 84 (1–2):125–34. doi: 10.1016/j.marpolbul.2014.05.027.
  • Brito, E. M. S., M. De la Cruz Barrón, C. A. Caretta, M. Goñi-Urriza, L. H. Andrade, G. Cuevas-Rodríguez, O. Malm, J. P. M. Torres, M. Simon, and R. Guyoneaud. 2015. Impact of hydrocarbons, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: Investigation of hydrocarbon degradation potential. The Science of the Total Environment 521–522:1–10. doi: 10.1016/j.scitotenv.2015.02.098.
  • Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Pena, J. K. Goodrich, J. I. Gordon, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7 (5):335–6. doi: 10.1038/nmeth.f.303.
  • Chelius, M. K., and E. W. Triplett. 2001. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microbial Ecology 41 (3):252–63. doi: 10.1007/s002480000087.
  • Chen, S., Z. Ma, S. Y. Li, M. G. Waigi, J. D. Jiang, J. Liu, and W. T. Ling. 2019. Colonization of polycyclic aromatic hydrocarbon-degrading bacteria on roots reduces the risk of PAH contamination in vegetables. Environment International 132:105081. doi:10.1016/j.envint.2019.105081.
  • Compant, S., A. Sessitsch, and F. Mathieu. 2012. The 125th anniversary of the first postulation of the soil origin of endophytic bacteria–a tribute to MLV Galippe. Plant and Soil 356 (1–2):299–301. doi: 10.1007/s11104-012-1204-9.
  • Congiu, E., and J. J. Ortega-Calvo. 2014. Role of desorption kinetics in the rhamnolipid-enhanced biodegradation of polycyclic aromatic hydrocarbons. Environmental Science & Technology 48 (18):10869–77. doi: 10.1021/es5011253.
  • Cravo-Laureau, C., G. Hernandez-Raquet, I. Vitte, R. Jezequel, V. Bellet, J. J. Godon, P. Caumette, P. Balaguer, and R. Duran. 2011. Role of environmental fluctuations and microbial diversity in degradation of hydrocarbons in contaminated sludge. Research in Microbiology 162 (9):888–95. doi: 10.1016/j.resmic.2011.04.011.
  • Festa, S., B. M. Coppotelli, and I. S. Morelli. 2013. Bacterial diversity and functional interactions between bacterial strains from a phenanthrene-degrading consortium obtained from a chronically contaminated-soil. International Biodeterioration & Biodegradation 85:42–51. doi: 10.1016/j.ibiod.2013.06.006.
  • Gurska, J., W. Wang, K. E. Gerhardt, A. M. Khalid, D. M. Isherwood, X. D. Huang, B. R. Glick, and B. M. Greenberg. 2009. Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environmental Science & Technology 43 (12):4472–9. doi: 10.1021/es801540h.
  • Hong, C., Y. X. Si, Y. Xing, and Y. Li. 2015. Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environmental Science and Pollution Research International 22 (14):10788–99. doi: 10.1007/s11356-015-4186-3.
  • Hong, W. J., Y. F. Li, W. L. Li, H. Jia, N. H. Minh, R. K. Sinha, H. B. Moon, H. Nakata, K. H. Chi, K. Kannan, et al. 2020. Soil concentrations and soil-air exchange of polycyclic aromatic hydrocarbons in five Asian countries. The Science of the Total Environment 711:135223. doi: 10.1016/j.scitotenv.2019.135223.
  • Karmakar, R., S. Bindiya, and P. Hariprasad. 2019. Convergent evolution in bacteria from multiple origins under antibiotic and heavy metal stress, and endophytic conditions of host plant. Science of the Total Environment 650 (Pt 1):858–67. doi: 10.1016/j.scitotenv.2018.09.078.
  • Kweon, O., S. J. Kim, and C. E. Cerniglia. 2019. An update on the genomic view of mycobacterial high-molecular-weight polycyclic aromatic hydrocarbon degradation. In Handbook of Hydrocarbon and Lipid Microbiology: Aerobic Utilization of Hydrocarbons, Oils and Lipids, ed. F. Rojo, 623–638. Cham: Springer. doi: 10.1007/978-3-319-50418-6_31.
  • Kuczynski, J., J. Stombaugh, W. A. Walters, A. González, J. G. Caporaso, and R. Knight. 2011. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Current protocols in bioinformatics, Chapter 10, Unit 10.7. Hoboken, NJ: Wiley. doi: 10.1002/0471250953.bi1007s36
  • Lanzotti, V. 2006. The analysis of onion and garlic. Journal of Chromatography A 1112 (1–2):3–22. doi: 10.1016/j.chroma.2005.12.016.
  • Li, J. H., E. T. Wang, W. F. Chen, and W. X. Chen. 2008. Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biology and Biochemistry 40 (1):238–46. doi: 10.1016/j.soilbio.2007.08.014.
  • Liu, J., Y. B. Xiang, Z. M. Zhang, W. T. Ling, and Y. Z. Gao. 2017. Inoculation of a phenanthrene-degrading endophytic bacterium reduces the phenanthrene level and alters the bacterial community structure in wheat. Applied Microbiology and Biotechnology 101 (12):5199–212. doi: 10.1007/s00253-017-8247-z.
  • Lopez-Echartea, E., M. Strejcek, S. Mukherjee, O. Uhlik, and K. Yrjala. 2020. Bacterial succession in oil-contaminated soil under phytoremediation with poplars. Chemosphere 243:125242. doi: 10.1016/j.chemosphere.2019.125242.
  • Lors, C., D. Damidot, J. F. Ponge, and F. Périé. 2012. Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environmental Pollution 165:11–7. doi: 10.1016/j.envpol.2012.02.004.
  • Lozupone, C., M. E. Lladser, D. Knights, J. Stombaugh, and R. Knight. 2011. UniFrac: An effective distance metric for microbial community comparison. The ISME Journal 5 (2):169–72. doi: 10.1038/ismej.2010.133.
  • Lu, C., Y. Hong, E. S. Odinga, J. Liu, D. C. W. Tsang, and Y. Gao. 2021. Bacterial community and PAH-degrading genes in paddy soil and rice grain from PAH-contaminated area. Applied Soil Ecology 158:103789. doi: 10.1016/j.apsoil.2020.103789.
  • Lu, L., Q. W. Chai, S. Y. He, C. P. Yang, and D. Zhang. 2019. Effects and mechanisms of phytoalexins on the removal of polycyclic aromatic hydrocarbons (PAHs) by an endophytic bacterium isolated from ryegrass. Environmental Pollution 253:872–81. doi: 10.1016/j.envpol.2019.07.097.
  • Malicka, M., F. Magurno, Z. Piotrowska-Seget, and D. Chmura. 2020. Arbuscular mycorrhizal and microbial profiles of an aged phenol-polynuclear aromatic hydrocarbon-contaminated soil. Ecotoxicology and Environmental Safety 192:110299. doi: 10.1016/j.ecoenv.2020.110299.
  • Marcon, E., I. Scotti, B. Hérault, V. Rossi, and G. Lang. 2014. Generalization of the partitioning of Shannon diversity. PLoS One 9 (3):e90289. doi: 10.1371/journal.pone.0090289.
  • Martin, F., S. Torelli, D. L. Paslier, A. Barbance, F. Martin-Laurent, D. Bru, R. Geremia, G. Blake, and Y. Jouanneau. 2012. Betaproteobacteria dominance and diversity shifts in the bacterial community of a PAH-contaminated soil exposed to phenanthrene. Environmental Pollution 162:345–53. doi: 10.1016/j.envpol.2011.11.032.
  • Ministry of Environmental Protection and Ministry of Land and Resource of the People's Republic of China (MEP and MLR). 2014. The bulletin of nationwide soil pollution status survey. April 17. http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.
  • Nasrollahi, M., A. A. Pourbabaei, H. Etesami, and K. Talebi. 2020. Diazinon degradation by bacterial endophytes in rice plant (Oryzia sativa L.): A possible reason for reducing the efficiency of diazinon in the control of the rice stem-borer. Chemosphere 246:125759. doi: 10.1016/j.chemosphere.2019.125759.
  • Oliveira, V., N. Gomes, A. Almeida, A. M. Silva, M. M. Simões, K. Smalla, and A. Cunha. 2014. Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading g bacteria. Molecular Ecology 23 (6):1392–404. doi: 10.1111/mec.12559.
  • Peng, A. P., J. Liu, Y. Z. Gao, and Z. Y. Chen. 2013. Distribution of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. from soils contaminated by polycyclic aromatic hydrocarbons. PLoS One 8 (12):e83054. doi: 10.1371/journal.pone.0083054.
  • Petrová, S., J. Rezek, P. Soudek, and T. Vaněk. 2017. Preliminary study of phytoremediation of brownfield soil contaminated by PAHs. Science of the Total Environment 599–600:572–80. doi: 10.1016/j.scitotenv.2017.04.163.
  • Phillips, L. A., J. J. Germida, R. E. Farrell, and C. W. Greer. 2008. Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biology and Biochemistry. 40 (12):3054–64. doi: 10.1016/j.soilbio.2008.09.006.
  • Podolich, O., P. Ardanov, I. Zaets, A. M. Pirttila, and N. Kozyrovska. 2015. Reviving of the endophytic bacterial community as a putative mechanism of plant resistance. Plant and Soil 388 (1–2):367–11. doi: 10.1007/s11104-014-2235-1.
  • Reysenbach, A. L., and N. R. Pace. 1995. Reliable amplification of hyperthermophilic archaeal 16S rRNA genes by the polymerase chain reaction. Archaea: A laboratory manual, 101–7. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Salam, M., and A. Varma. 2019. Bacterial community structure in soils contaminated with electronic waste pollutants from Delhi NCR, India. Electronic Journal of Biotechnology 41:72–80. doi: 10.1016/j.ejbt.2019.07.003.
  • Schloss, P. D., S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks, C. J. Robinson, et al. 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75 (23):7537–41. doi: 10.1128/AEM.01541-09.
  • Setsungnern, A., C. Treesubsuntorn, and P. Thiravetyan. 2018. Chlorophytum comosum–bacteria interactions for airborne benzene remediation: Effect of native endophytic Enterobacter sp. EN2 inoculation and blue-red LED light. Plant Physiology and Biochemistry 130:181–91. doi: 10.1016/j.plaphy.2018.06.042.
  • Su, J., W. Ouyang, Y. Hong, D. Liao, S. Khan, and H. Li. 2016. Responses of endophytic and rhizospheric bacterial communities of salt marsh plant (Spartina alterniflora) to polycyclic aromatic hydrocarbons contamination. Journal of Soils and Sediments 16 (2):707–15. doi: 10.1007/s11368-015-1217-0.
  • Sun, K., J. Liu, L. Jin, and Y. Z. Gao. 2014. Utilizing pyrene-degrading endophytic bacteria to reduce the risk of plant pyrene contamination. Plant and Soil 374 (1–2):251–62. doi: 10.1007/s11104-013-1875-x.
  • Taghavi, S., T. Barac, B. Greenberg, B. Borremans, J. Vangronsveld, and D. van der Lelie. 2005. Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Applied and Environmental Microbiology 71 (12):8500–5. doi:10.1128/AEM.71.12.8500–8505.2005.
  • Tian, B. Y., C. J. Zhang, Y. Ye, J. M. Wen, Y. M. Wu, H. Z. Wang, H. M. Li, S. X. Cai, W. T. Cai, Z. Q. Cheng, et al. 2017. Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agriculture, Ecosystems & Environment 247:149–56. doi: 10.1016/j.agee.2017.06.041.
  • Vila, J., J. M. Nieto, J. Mertens, S. Dirk, and G. Magdalena. 2010. Microbial community structure of a heavy fuel oil-degrading marine consortium: Linking microbial dynamics with polycyclic aromatic hydrocarbon utilization. FEMS Microbiology Ecology 73 (2):349–62. doi: 10.1111/j.1574-6941.2010.00902.x.
  • Yang, J., Gu, Y. J. Chen, Z. G. Song, Y. Sun, F. F. Liu, J. Waigi. M., and G. 2021. Colonization and performance of a pyrene-degrading bacterium Mycolicibacterium sp. Pyr9 on root surfaces of white clover. Chemosphere 263:127918. doi: 10.1016/j.chemosphere.2020.127918.
  • Yu, H., T. Li, Y. Liu, and L. Ma. 2019. Spatial distribution of polycyclic aromatic hydrocarbon contamination in urban soil of China. Chemosphere 230:498–509. doi: 10.1016/j.chemosphere.2019.05.006.
  • Wang, Y. F., and N. F. Y. Tam. 2011. Microbial community dynamics and biodegradation of polycyclic aromatic hydrocarbons in polluted marine sediments in Hong Kong. Marine Pollution Bulletin 63 (5–12):424–30. doi: 10.1016/j.marpolbul.2011.04.046.
  • Xia, W. J., Z. F. Du, Q. F. Cui, H. Dong, F. Y. Wang, P. Q. He, and Y. C. Tang. 2014. Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of N-alkanes and polycyclic aromatic hydrocarbons. Journal of Hazardous Materials 276:489–98. doi: 10.1016/j.jhazmat.2014.05.062.
  • Zhan, X. H., X. Liang, T. H. Jiang, and G. H. Xu. 2013. Interaction of phenanthrene and potassium uptake by wheat roots: A mechanistic model. BMC Plant Biology 13:168. doi: 10.1186/1471-2229-13-168.
  • Zhu, X. Z., X. Ni, J. Liu, and Y. Z. Gao. 2014. Application of endophytic bacteria to reduce persistent organic pollutants contamination in plants. CLEAN - Soil, Air, Water 42 (3):306–10. doi: 10.1002/clen.201200314.
  • Zhu, X. Z., L. Jin, K. Sun, S. Li, X. L. Li, and W. T. Ling. 2016. Phenanthrene and pyrene modify the composition and structure of the cultivable endophytic bacterial community in ryegrass (Lolium multiflorum L.). International Journal of Environmental Research and Public Health 13:1081. doi: 10.3390/ijerph13111081.
  • Zhu, X. Z., W. Q. Wang, D. E. Crowley, K. Sun, S. P. Hao, M. G. Waigi, and Y. Z. Gao. 2017. The endophytic bacterium Serratia sp. PW7 degrades pyrene in wheat. Environmental Science and Pollution Research 24 (7):6648–56. doi: 10.1007/s11356-016-8345-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.