432
Views
0
CrossRef citations to date
0
Altmetric
Notes

Bioremediation of polycyclic aromatic hydrocarbons from an aged contaminated agricultural soil using degrading bacteria and soil amendments

, , , , , , & show all
Pages 305-317 | Published online: 15 Sep 2021

References

  • Adams, R. I., M. Miletto, J. W. Taylor, and T. D. Bruns. 2013. Dispersal in microbes: Fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. The ISME Journal 7 (7):1262–73. doi: 10.1038/ismej.2013.84.
  • Aon, M. A., and A. C. Colaneri. 2001. II. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Applied Soil Ecology 18 (3):255–70. doi: 10.1016/S0929-1393(01)00161-5.
  • Baborová, P., M. Möder, P. Baldrian, K. Cajthamlová, and T. Cajthaml. 2006. Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Research in Microbiology 157 (3):248–53. doi: 10.1016/j.resmic.2005.09.001.
  • Bao, H., J. Wang, H. Zhang, J. Li, H. Li, and F. Wu. 2020. Effects of biochar and organic substrates on biodegradation of polycyclic aromatic hydrocarbons and microbial community structure in PAHs-contaminated soils. Journal of Hazardous Materials 385:121595. doi: 10.1016/j.jhazmat.2019.121595.
  • Baran, S., J. E. Bielińska, and P. Oleszczuk. 2004. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma 118 (3–4):221–32. doi: 10.1016/S0016-7061(03)00205-2.
  • Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59:39–46. doi: 10.1097/00010694-194501000-00006.
  • Cao, Y., B. Yang, Z. Song, H. Wang, F. He, and X. Han. 2016. Wheat straw biochar amendments on the removal of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil. Ecotoxicology and Environmental Safety 130:248–55. doi: 10.1016/j.ecoenv.2016.04.033.
  • Chai, C., Q. Cheng, J. Wu, L. Zeng, Q. Chen, X. Zhu, D. Ma, and W. Ge. 2017. Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in the soils of vegetable greenhouses in Shandong, China. Ecotoxicology and Environmental Safety 142:181–8. doi: 10.1016/j.ecoenv.2017.04.014.
  • D’Annibale, A., F. Rosetto, V. Leonardi, F. Federici, and M. Petruccioli. 2006. Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Applied and Environmental Microbiology 72 (1):28–36. doi: 10.1128/aem.72.1.28-36.2006.
  • Eibes, G., T. Cajthaml, M. T. Moreira, G. Feijoo, and J. M. Lema. 2006. Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere 64 (3):408–14. doi: 10.1016/j.chemosphere.2005.11.075.
  • Ezenne, G. I., O. A. Nwoke, D. E. Ezikpe, S. E. Obalum, and B. O. Ugwuishiwu. 2014. Use of poultry droppings for remediation of crude-oil-polluted soils: Effects of application rate on total and poly-aromatic hydrocarbon concentrations. International Biodeterioration & Biodegradation 92:57–65. doi: 10.1016/j.ibiod.2014.01.025.
  • Federici, E., M. A. Giubilei, S. Covino, G. Zanaroli, F. Fava, A. D’Annibale, and M. Petruccioli. 2012. Addition of maize stalks and soybean oil to a historically PCB-contaminated soil: Effect on degradation performance and indigenous microbiota. New Biotechnology 30 (1):69–79. doi: 10.1016/j.nbt.2012.07.007.
  • Fenice, M., G. G. Sermanni, F. Federici, and A. D'Annibale. 2003. Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media. Journal of Biotechnology 100 (1):77–85. doi: 10.1016/S0168-1656(02)00241-9.
  • García-Díaz, C., M. T. Ponce-Noyola, F. Esparza-García, F. Rivera-Orduñab, and J. Barrera-Cortésa. 2013. PAH removal of high molecular weight by characterized bacterial strains from different organic sources. International Biodeterioration & Biodegradation 85:311–22. doi: 10.1016/j.ibiod.2013.08.016.
  • Han, X., H. Hu, X. Shi, L. Zhang, and J. He. 2017. Effects of different agricultural wastes on the dissipation of PAHs and the PAH-degrading genes in a PAH-contaminated soil. Chemosphere 172:286–93. doi: 10.1016/j.chemosphere.2017.01.012.
  • Hayakawa, K. 2018. Polycyclic aromatic hydrocarbons. In Chemistry of polycyclic aromatic hydrocarbons (PAHs), nitropolycyclic aromatic hydrocarbons (NPAHs) and other oxidative derivatives of PAHs. p 3–10. Singapore: Springer. doi: 10.1007/978-981-10-6775-4_1.
  • Haynes, R. J., and R. Naidu. 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutrient Cycling in Agroecosystems 51 (2):123–37. doi: 10.1023/A:1009738307837.
  • Holman, H. Y. N., N. Karl, D. L. Sorensen, C. D. Miller, M. C. Martin, T. Borch, W. Mckinney, and R. C. Sims. 2002. Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies. Environmental Science & Technology 36 (6):1276–80. doi: 10.1021/es0157200.
  • Jones, M. D., D. W. Crandell, D. R. Singleton, and M. D. Aitken. 2011. Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environmental Microbiology 13 (10):2623–32. doi: 10.1111/j.1462-2920.2011.02501.x.
  • Kanaly, R. A., and S. Harayama. 2000. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology 182 (8):2059–67. doi:10.1128/jb.182.8.2059.2000.
  • Karamalidis, A. K., A. C. Evangelou, E. Karabika, A. I. Koukkou, C. Drainas, and E. A. Voudrias. 2010. Laboratory scale bioremediation of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosa strain Spet. Bioresource Technology 101 (16):6545–52. doi: 10.1016/j.biortech.2010.03.055.
  • Kong, L., Y. Gao, Q. Zhou, X. Zhao, and Z. Sun. 2018. Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy. Journal of Hazardous Materials 343:276–84. doi: 10.1016/j.jhazmat.2017.09.040.
  • Kuśmierz, M., P. Oleszczuk, P. Kraska, E. Pałys, and S. Andruszczak. 2016. Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere 146:272–9. doi: 10.1016/j.chemosphere.2015.12.010.
  • Lamichhane, S., K. C. Bal Krishna, and R. Sarukkalige. 2017. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. Journal of Environmental Management 199:46–61. doi: 10.1016/j.jenvman.2017.05.037.
  • Li, X., Y. Song, F. Wang, Y. Bian, and X. Jiang. 2019. Combined effects of maize straw biochar and oxalic acid on the dissipation of polycyclic aromatic hydrocarbons and microbial community structures in soil: A mechanistic study. Journal of Hazardous Materials 364:325–31. doi: 10.1016/j.jhazmat.2018.10.041.
  • Liu, J., Y. Ding, L. Ma, G. Gao, and Y. Wang. 2017. Combination of biochar and immobilized bacteria in cypermethrin-contaminated soil remediation. International Biodeterioration & Biodegradation 120:15–20. doi: 10.1016/j.ibiod.2017.01.039.
  • Liu, X., W. Ge, X. Zhang, C. Chai, J. Wu, D. Xiang, and X. Chen. 2019. Biodegradation of aged polycyclic aromatic hydrocarbons in agricultural soil by Paracoccus sp. LXC combined with humic acid and spent mushroom substrate. Journal of Hazardous Materials 379:120820. doi: 10.1016/j.jhazmat.2019.120820.
  • Lladó, S., N. Jiménez, M. Viñas, and A. M. Solanas. 2009. Microbial populations related to PAH biodegradation in an aged biostimulated creosote-contaminated soil. Biodegradation 20 (5):593–601. doi: 10.1007/s10532-009-9247-1.
  • Lladó, S., E. Gràcia, A. M. Solanas, and M. Viñas. 2013. Fungal and bacterial microbial community assessment during bioremediation assays in an aged creosote-polluted soil. Soil Biology and Biochemistry 67:114–23. doi: 10.1016/j.soilbio.2013.08.010.
  • Lu, H., J. Sun, and L. Zhu. 2017. The role of artificial root exudate components in facilitating the degradation of pyrene in soil. Scientific Reports 7 (1):7130. doi: 10.1038/s41598-017-07413-3.
  • Luo, L., S. Lin, H. Huang, and S. Zhang. 2012. Relationships between aging of PAHs and soil properties. Environmental Pollution 170:177–182. doi: 10.1016/j.envpol.2012.07.003.
  • Marzadori, C., C. Ciavatta, D. Montecchio, and C. Gessa. 1996. Effects of lead pollution on different soil enzyme activities. Biology and Fertility of Soils 22 (1–2):53–58. doi: 10.1007/s003740050075.
  • Mizwar, A., G. L. Sari, S. R. Juliastuti, and Y. Trihadiningrum. 2016. Bioremediation of soil contaminated with native polycyclic aromatic hydrocarbons from unburnt coal using an in-vessel composting method. Bioremediation Journal 20 (2):98–107. doi: 10.1080/10889868.2015.1124064.
  • Peluffo, M., F. Pardo, A. Santos, and A. Romero. 2016. Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil. Science of the Total Environment 563–564:649–56. doi: 10.1016/j.scitotenv.2015.09.034.
  • Qian, P., J. J. Schoenaru, and R. E. Karamanos. 1994. Simultaneous extraction of available phosphorus and potassium with a new soil test: A modification of Kelowna extraction. Communications in Soil Science and Plant Analysis 25 (5–6):627–35. doi: 10.1080/00103629409369068.
  • Rajapaksha, A. U., S. S. Chen, D. C. Tsang, M. Zhang, M. Vithanage, S. Mandal, B. Gao, N. S. Bolan, and Y. S. Ok. 2016. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 148:276–91. doi: 10.1016/j.chemosphere.2016.01.043.
  • Redfern, L. K., C. M. Gardner, E. Hodzic, P. L. Ferguson, H. Hsu-Kim, and C. K. Gunsch. 2019. A new framework for approaching precision bioremediation of PAH contaminated soils. Journal of Hazardous Materials 378:120859. doi: 10.1016/j.jhazmat.2019.120859.
  • Rodriguez-Campos, J., L. Dendooven, D. Alvarez-Bernal, and S. M. Contreras-Ramos. 2014. Potential of earthworms to accelerate removal of organic contaminants from soil: A review. Applied Soil Ecology 79:10–25. doi: 10.1016/j.apsoil.2014.02.010.
  • Sayara, T., M. Sarrà, and A. Sánchez. 2009. Preliminary screening of co-substrates for bioremediation of pyrene-contaminated soil through composting. Journal of Hazardous Materials 172 (2–3):1695–8. doi: 10.1016/j.jhazmat.2009.07.142.
  • Sayara, T., E. Borràs, G. Caminal, M. Sarrà, and A. Sánchez. 2011. Bioremediation of PAHs-contaminated soil through composting: Influence of bioaugmentation and biostimulation on contaminant biodegradation. International Biodeterioration & Biodegradation 65 (6):859–65. doi: 10.1016/j.ibiod.2011.05.006.
  • Schaefer, M., and F. Juliane. 2007. The influence of earthworms and organic additives on the biodegradation of oil contaminated soil. Applied Soil Ecology 36 (1):53–62. doi: 10.1016/j.apsoil.2006.11.002.
  • Sen, S., and P. M. Chalk. 1995. Biological interactions between soil nitrogen and alkaline-hydrolysing nitrogen fertilizers. Biology and Fertility of Soils 20 (1):41–8. doi: 10.1007/BF00307839.
  • Smith, K. E. C., T. Martin, L. Y. Wick, and H. Hauke. 2009. Sorption to humic acids enhances polycyclic aromatic hydrocarbon biodegradation. Environmental Science & Technology 43 (19):7205–11. doi: 10.1021/es803661s.
  • Song, Z., A. Vail, M. J. Sadowsky, and J. S. Schilling. 2014. Quantitative PCR for measuring biomass of decomposer fungi in planta. Fungal Ecology 7:39–46. doi: 10.1016/j.funeco.2013.12.004.
  • Tabatabai, M. A., and J. M. Bremner. 1972. Assay of urease activity in soils. Soil Biology and Biochemistry 4 (4):479–87. doi: 10.1016/0038-0717(72)90064-8.
  • Tejeda-Agredano, M. C., P. Mayer, and J. J. Ortega-Calvo. 2014. The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime. Environmental Pollution 184:435–42. doi: 10.1016/j.envpol.2013.09.031.
  • Teng, Y., Y. Luo, M. Sun, Z. Liu, Z. Li, and P. Christie. 2010. Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresource Technology 101 (10):3437–43. doi: 10.1016/j.biortech.2009.12.088.
  • Tian, Y., H. J. Liu, T. L. Zheng, K. K. Kwon, S. J. Kim, and C. L. Yan. 2008. PAHs contamination and bacterial communities in mangrove surface sediments of the Jiulong River Estuary, China. Marine Pollution Bulletin 57 (6–12):707–15. doi: 10.1016/j.marpolbul.2008.03.011.
  • Wolf, D. C., Z. Cryder, R. Khoury, C. Carlan, and J. Gan. 2020. Bioremediation of PAH-contaminated shooting range soil using integrated approaches. The Science of the Total Environment 726:138440. doi: 10.1016/j.scitotenv.2020.138440.
  • Xiao, N., R. Liu, C. Jin, and Y. Dai. 2015. Efficiency of five ornamental plant species in the phytoremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecological Engineering 75:384–91. doi: 10.1016/j.ecoleng.2014.12.008.
  • Xu, N., G. Tan, H. Wang, and X. Gai. 2016. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology 74:1–8. doi: 10.1016/j.ejsobi.2016.02.004.
  • Yap, C. L., S. Gan, and H. K. Ng. 2011. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere 83 (11):1414–30. doi: 10.1016/j.chemosphere.2011.01.026.
  • Zimmerman, A. R. 2010. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environmental Science & Technology 44 (4):1295–301. doi: 10.1021/es903140c.
  • Zhang, G., L. He, X. Guo, Z. Han, L. Ji, Q. He, L. Han, and K. Sun. 2020. Mechanism of biochar as a biostimulation strategy to remove polycyclic aromatic hydrocarbons from heavily contaminated soil in a coking plant. Geoderma 375:114497. doi: 10.1016/j.geoderma.2020.114497.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.