786
Views
2
CrossRef citations to date
0
Altmetric
Articles

A real time machining error compensation method based on dynamic features for cutting force induced elastic deformation in flank milling

, &

References

  • Abdullah, R.I.R. (2011) Hybrid deflection prediction for machining thin-wall titanium alloy aerospace component. Ph.D. Dissertation, RMIT University, Melbourne.
  • Altintas, Y.; Kersting, P.; Biermann, D.; Budak, E.; Denkena, B.; Lazoglu, I. (2014) Virtual process systems for part machining operations. CIRP Annals-Manufacturing Technology, 63(2): 585–605.
  • Arrazola, P.J.; Özel, T.; Umbrello, D.; Davies, M.; Jawahir, I.S. (2013) Recent advances in modelling of metal machining processes. CIRP Annals-Manufacturing Technology, 62(2): 695–718.
  • Bai, W. (2008) Study on deformation prediction theory and methods of the aerospace thin-walled components during precision milling process. Ph.D. Dissertation, Zhejiang University, China. ( In Chinese)
  • Bandy, H.T.; Donmez, M.A.; Gilsinn, D.E.; Han, C.; Kennedy, M.; Ling, A.; Yee, K. (2001) A Methodology for Compensating Errors Detected by Process-Intermittent Inspection. National Institute of Standards and Technology, Gaithersburg, no. 6811.
  • Bera, T.; Desai, K.; Rao, P.V.M. (2011) Error compensation in flexible end milling of tubular geometries. Journal of Materials Processing Technology, 211(1): 24–34.
  • Budak, E. (2006) Analytical models for high performance milling. Part I. Cutting forces, structural deformations and tolerance integrity. International Journal of Machine Tools & Manufacture, 46(12-13): 1478–1488.
  • Chen, Y.; Gao, J.; Deng, H.; Zheng, D.; Chen, X.; Kelly, R. (2013) Spatial statistical analysis and compensation of machining errors for complex surfaces. Precision Engineering, 37(1): 203–212.
  • Chen, W.; Xue, J.; Tang, D.; Chen, H.; Qu, S. (2009) Deformation prediction and error compensation in multilayer milling processes for thin-walled parts. International Journal of Machine Tools & Manufacture, 49(11): 859–864.
  • Cho, M.W.; Seo, T.I.; Kwon, H.D. (2003) Integrated error compensation method using OMM system for profile milling operation. Journal of Materials Processing Technology, 136(1): 88–89.
  • Dai, W.; Vyatkin, V. (2012) Redesign distributed PLC control systems using IEC 61499 function blocks. IEEE Transactions on Automation Science & Engineering, 9(2): 390–401.
  • ElMaraghy, H.A.; Barari, A.; Knopf, G.K. (2004) Integrated inspection and machining for maximum conformance to design tolerances. CIRP Annals-Manufacturing Technology, 53(1): 411–416.
  • Guiassa, R.; Mayer, J.R.R. (2011) Predictive compliance based model for compensation in multi-pass milling by on-machine probing. CIRP Annals-Manufacturing Technology, 60(1): 391–394.
  • Huang, N.; Bi, Q.; Wang, Y.; Sun, C. (2014) 5-Axis adaptive flank milling of flexible thin-walled parts based on the on-machine measurement. International Journal of Machine Tools & Manufacture, 87: 1–8.
  • Li, B.; Jiang, X.; Yang, J.; Liang, S.Y. (2015) Effects of depth of cut on the redistribution of residual stress and distortion during the milling of thin-walled part. Journal of Materials Processing Technology, 216: 223–233.
  • Li, Y.; Liu, C.; Gao, J. X.; Shen, W. (2015) An integrated feature-based dynamic control system for on-line machining, inspection and monitoring. Integrated Computer Aided Engineering, 22: 187–200.
  • Li, Y.; Liu, X.; Gao, J. X.; Maropoulos, P.G. (2012) A dynamic feature information model for integrated manufacturing planning and optimization. CIRP Annals-Manufacturing Technology, 61(1): 167–170.
  • Liu, C.; Li, Y.; Shen, W. (2014) Dynamic feature modelling for closed-loop machining process control of complex parts. International Journal of Computer Integrated Manufacturing, 28(7): 753–765.
  • Liu, G. (2009) Study on deformation of titanium thin-walled part in milling process. Journal of Materials Processing Technology, 209(66): 2788–2793.
  • Liu, X.; Li, Y.G.; Wang, L.H. (2016) Combining dynamic machining feature with function blocks for adaptive machining. IEEE Transactions on Automation Science & Engineering, 13(2): 828–841.
  • Rao, V.S.; Rao, P.V.M. (2006) Tool deflection compensation in peripheral milling of curved geometries. International Journal of Machine Tools & Manufacture, 46(15): 2036–2043.
  • Ratchev, S.; Liu, S.; Huang, W.; Becker, A.A. (2004) Milling error prediction and compensation in machining of low-rigidity parts. International Journal of Machine Tools & Manufacture, 44(15): 1629–1641.
  • Ratchec, S.; Liu, S.; Becker, A.A. (2009) Error compensation strategy in milling flexible thin-wall parts. Journal of Materials Processing Technology, 162: 673–681.
  • Rodríguez, P.; Labarga, J.E. (2013) A new model for the prediction of cutting forces in micro-end-milling operations. Journal of Materials Processing Technology, 213(2): 261–268.
  • Smith, S.; Wilhelm, R.; Dutterer, B.; Cherukuri, H.; Goel, G. (2012) Sacrificial structure preforms for thin part machining. CIRP Annals–Manufacturing Technology, 61(1): 379–382.
  • Sortino, M.; Belfio, S.; Motyl, B.; Totis, G. (2014) Compensation of geometrical errors of CAM/CNC machined parts by means of 3D workpiece model adaptation. Computer-Aided Design, 48: 28–38.
  • Tang, A.; Liu, Z. (2008) Deformations of thin-walled plate due to static end milling force. Journal of Materials Processing Technology, 206(1–3): 345–351.
  • Wan, M.; Zhang, W.H.; Qin, G.H.; Wang, Z.P. (2008) Strategies for error prediction and error control in peripheral milling of thin-walled workpiece. International Journal of Machine Tools & Manufacture, 48(12): 1366–1374.
  • Wu, Q.; Li, D.; Ren, L.; Mo, S. (2016) Detecting milling deformation in 7075 aluminum alloy thin-walled plates using finite difference method. The International Journal of Advanced Manufacturing Technology, 85: 1291–1302.
  • Yang, M.; Choi, J. (1998) A tool deflection compensation system for end milling accuracy improvement. Journal of Manufacturing Science & Engineering, 120(2): 222–229.
  • Yoshioka, H.; Shinno, H.; Sawano, H.; Tanigawa, R. (2014) Monitoring of distance between diamond tool edge and workpiece surface in ultraprecision cutting using evanescent light. CIRP Annals–Manufacturing Technology, 63(1): 341–344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.