471
Views
29
CrossRef citations to date
0
Altmetric
Articles

Development and machinability evaluation of MgO doped Y-ZTA ceramic inserts for high-speed machining of steel

, , , &

References

  • Abia, C.B.; Emrullahoglu, O.F.; Said, G. (2013) Microstructure and mechanical properties of MgO-stabilized ZrO2–Al2O3 dental composites. Journal of the Mechanical Behavior of Biomedical Materials, 18: 123–131.
  • Azhar, A.Z.A.; Mohamed, H.; Ratnam, M.M.; Ahmad, Z.A. (2010) The effects of MgO addition on microstructure, mechanical properties and wear performance of zirconia-toughened alumina cutting inserts. Journal of Alloys and Compounds, 497: 316–320.
  • Azhar, A.Z.A.; Mohamad, H.; Ratnam, M.M.; Ahmad, Z.A. (2011) Effect of MgO particle size on the microstructure, mechanical properties and wear performance of ZTA–MgO ceramic cutting inserts. International Journal of Refractory Metals and Hard Materials, 29: 456–461.
  • Berry, K.A.; Harmer, M.P. (1986) Effect of MgO solute on microstructure development in Al2O3. Journal of the American Ceramic Society, 69: 143–149.
  • Biotteau-Deheuvels, K.; Zych, L.; Gremillard, L.; Chevalier, J. (2012) Effects of Ca-, Mg- and Si-doping on microstructures of alumina–zirconia composites. Journal of the European Ceramic Society, 32: 2711–2721.
  • Casellas, D.; Nagl, M.M.; Llanes, L.; Anglada, M. (1997) Growth of small surface indentation cracks in alumina and zirconia toughened alumina. Key Engineering Materials, 127–131: 895–902.
  • Casto, S.L.; Valvo, E.L.; Lucchini, E.; Maschio, S.; Ruisi, V.F. (1997) Wear rates and wear mechanisms of alumina-based tools cutting steel at a low cutting speed. Wear, 208: 67–72.
  • Carta, G.; Habra, N.El.; Rossetto, G.; Zanella, P.; Casarin, M.; Barreca, D.; Maragno, C.; Tondello, E. (2007) MgO and CaO stabilized ZrO2 thin films obtained by metal organic chemical vapor deposition. Surface and Coatings Technology, 201: 9289–9293.
  • Chevalier, J. (2006) What future for zirconia as a biomaterial? Biomaterials, 27: 535–543.
  • Claussew, N. (1976) Fracture toughness of Al2O3 with an unstabilized ZrO2 dispersed phase. Journal of the American Ceramic Society, 59: 49–51.
  • Coble, R.L. (1961) Sintering crystalline solids. II. Experimental test of diffusion models in powder compacts. Japanese Journal of Applied Physics, 32: 793–799.
  • Cullity, B.D. (1978) Elements of X-ray Diffraction, 2nd ed. Addison-Wesley, New York.
  • Daguano, J.K.M.F.; Santos, C.; Souza, R.C.; Balestra, R.M.; Strecker, K.; Elias, C.N. (2007) Properties of ZrO2–Al2O3 composite as a function of isothermal holding time. International Journal of Refractory Metals and Hard Materials, 25: 374–379.
  • Evans, A.G.; Charles, E.A. (1976) Fracture toughness determination by indentation. Journal of the American Ceramic Society, 59: 371–372.
  • Garvie, R.C.; Hannink, R.H.; Pascoe, R.T. (1975) Ceramic steel? Nature, 258: 703–704.
  • Greskovich, C.; Anthony Brewer, J. (2001) Solubility of magnesia in polycrystalline alumina at high temperatures. Journal of the American Ceramic Society, 84: 420–425.
  • Harmer, M.P.; Robem, E.W.; Brook, R.J. (1979) Rapid sintering of pure and doped a-Al2O3. Transactions of the British Ceramic Society, 78: 22–25.
  • Hossen, M.M.; Chowdhury, F.U.Z.; Gafur, M.A.; Hakim, A.K.M.A. (2014) Structural and mechanical properties of zirconia toughened alumina (ZTA) composites. International Journal of Engineering Research & Technology, 3: 2128–2134.
  • Ipek, M.; Zeytin, S.; Bindal, C. (2011) An evaluation of Al2O3–ZrO2 composites produced by co-precipitation method, ceramics for machining. Journal of Alloys and Compounds, 509: 486–489.
  • Kelly, J.R.; Denry, I. (2008) Stabilized zirconia as a structural ceramic: An overview. Dental Materials, 24: 289–298.
  • Kim, T.; Kim, D.; Kang, S. (2014) Effect of additives on the sintering of MgAl2O4. Journal of Alloys and Compounds, 587: 594–599.
  • Komanduri, R.; Flom, D.G.; Lee, M. (1985) Highlights of the DARPA advanced machining research program. Journal of Manufacturing Science and Engineering, 107: 325–335.
  • Kumar, A.S.; Durai, A.R.; Sornakumar, T. (2006) The effect of tool wear on tool life of aluminium –based ceramic cutting tools while machining hardened martensitic stainless steel. Journal of Materials Processing Technology, 173: 151–156.
  • Kumar A.S.; Khan M.A.; Thiraviam R. (2007) Machining parameters optimization for alumina based ceramic cutting tools using genetic algorithm. Machining Science and Technology, 10: 471–489.
  • Lawn, B.R.; Swain, M.V. (1975) Microfracture beneath point indentations in brittle solids. Journal of Materials Science, 10: 113–122.
  • Mandal, N.; Doloi, B.; Mondal, B. (2013) Predictive modelling of surface roughness in high speed machining of AISI 4340 steel using yttria stabilized zirconia toughened alumina turning insert. International Journal of Refractory Metals and Hard Materials, 38: 40–46.
  • Miles, J.W.; Feltham, P. (1971) The disintegration of sintered alumina tool tips. International Journal of Machine Tools and Manufacture, 11: 63–73.
  • Mokhtar, M.; Basahel, S.N.; Ali, T.T. (2013) Effect of synthesis methods for mesoporous zirconia on its structural and textural properties. Journal of Materials Science, 48: 2705–2713.
  • Mondal, B.; Mandal, N.; Doloi, B. (2014) Development of Ce/Y-PSZ toughened Alumina inserts for high speed machining steel. International Journal of Applied Ceramic Technology, 11: 228–239.
  • Nevarez-Rascon, A.; Aguilar-Elguezabal, A.; Orrantia, E.; Bocanegra-Bernal, M.H. (2009) On the wide range of mechanical properties of ZTA and ATZ based dental ceramic composites by varying the Al2O3 and ZrO2 content. International Journal of Refractory Metals and Hard Materials, 27: 962–970.
  • Pellen, J.G.J. (1975) Influence of MgO on the evolution of the microstructure of Al2O3. Materials Science Research, 10: 443–453.
  • Ramzan, N.; Naveed, S.; Rizwan, M.; Witt, W. (2011) Root cause analysis of primary reformer catastrophic failure: A case study. Process Safety Progress, 30: 62–65.
  • Rittidech, A.; Portia, L.; Bongkarn, T. (2006) The relationship between microstructure and mechanical properties of Al2O3–MgO ceramics. Materials Science and Engineering: A, 438–440: 395–398.
  • Rühle, M.; Claussen, N.; Heuer, A.H. (1986) Transformation and microcrack toughening as complementary processes in ZrO2-Toughened Al2O3. Journal of the American Ceramic Society, 69: 195–197.
  • Singh, B.K.; Mondal, B.; Mandal, N. (2016) Machinability evaluation and desirability function optimization of turning parameters for Cr2O3 doped zirconia toughened alumina (Cr-ZTA) cutting insert in high speed machining of steel. Ceramics International, 42: 3338–3350.
  • Xu H.H.K.; Jahanmir S.; Ives L.K. (1996) Effect of grinding on strength of tetragonal zirconia and zirconia-toughened alumina. Machining Science and Technology, 1(1): 49–66.
  • Wang, J.; Stevens, R. (1989) Zirconia-toughened alumina (ZTA) ceramics. Journal of Materials Science, 24: 3421–3440.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.