485
Views
37
CrossRef citations to date
0
Altmetric
Articles

Evaluation of machinability and economic performance in cryogenic-assisted hard turning of α-β titanium: a step towards sustainable manufacturing

, , , , &

References

  • Belluco, W.; Chiffre, L.D. (2002) Surface integrity and part accuracy in reaming and tapping stainless steel with new vegetable based cutting oils. Tribology International, 35(12): 865–870.
  • Braham-Bouchnak, T.; Germain, G.; Morel, A.; Furet, B. (2015) Influence of high-pressure coolant assistance on the machinability of the titanium alloy Ti555-3. Machining Science and Technology, 19(1): 134–151.
  • Conradie, P.; Dimitrov, D.; Oosthuizen, G. (2016) A cost modelling approach for milling titanium alloys. Procedia CIRP, 46: 412–415.
  • da Silva, R.B.; Machado, Á.R.; Ezugwu, E.O.; Bonney, J.; Sales, W.F. (2013) Tool life and wear mechanisms in high speed machining of Ti–6Al–4V alloy with PCD tools under various coolant pressures. Journal of Materials Processing Technology, 213(8): 1459–1464.
  • Debnath, S.; Reddy, M.M.; Yi, Q.S. (2014) Environmental friendly cutting fluids and cooling techniques in machining: a review. Journal of Cleaner Production, 83: 33–47.
  • Deshpande, Y.V.; Andhare, A.B.; Padole, P.M. (2018) How cryogenic techniques help in machining of nickel alloys? A review. Machining Science & Technology, 1: 1–42.
  • Dhar, N.R.; Islam, M.W.; Islam, S.; Mithu, M.A.H. (2006a) The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel. Journal of Materials Processing Technology, 171(1): 93–99.
  • Dhar, N.R.; Kamruzzaman, M.; Ahmed, M. (2006b) Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. Journal of Materials Processing Technology, 172(2): 299–304.
  • Dinesh, S.; Senthilkumar, V.; Asokan, P.; Arulkirubakaran, D. (2015) Effect of cryogenic cooling on machinability and surface quality of bio-degradable ZK60 Mg alloy. Materials & Design, 87: 1030–1036.
  • Gupta, K.; Laubscher, R.F. (2017) Sustainable machining of titanium alloys: a critical review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(14): 2543–2560.
  • Hegab, H.A.; Darras, B.; Kishawy, H.A. (2018) Towards sustainability assessment of machining processes. Journal of Cleaner Production, 170: 694–703.
  • Hong, S.Y.; Markus, I.; Jeong, W.C. (2001) New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 41(15): 2245–2260.
  • Hubbard, K.M.; Callahan, R.N.; Strong, S.D. (2008) A standardized model for the evaluation of machining coolant/lubricant costs. The International Journal of Advanced Manufacturing Technology, 36(1–2): 1–10.
  • Jamil, M.; Khan, A.M.; Hegab, H.; Gong, L.; Mia, M.; Gupta, M.K.; He, N. (2019) Effects of hybrid Al2O3-CNT nanofluids and cryogenic cooling on machining of Ti-6Al-4V. The International Journal of Advanced Manufacturing Technology, 102(9–12): 3895–3909.
  • Jawahir, I.S. (2001) A machining performance study in dry contour turning of aluminum alloys with flat-faced and grooved diamond tools. Machining Science and Technology, 5(5): 269–289.
  • Jawahir, I.S.; Attia, H.; Biermann, D.; Duflou, J.; Klocke, F.; Meyer, D.; Newman, S.T.; Pusavec, F.; Putz, M.; Rech, J.; Schulze, V.; Umbrello, D. (2016) Cryogenic manufacturing processes. CIRP Annals, 65(2): 713–736.
  • Josyula, S.K.; Narala, S.K.R. (2018) Performance enhancement of cryogenic machining and its effect on tool wear during turning of Al-Ticp composites. Machining Science and Technology, 22: 225–248.
  • Ju, C.; Keranen, L.P.; Haapala, K.R.; Michalek, D.J.; Sutherland, J.W. (2005) Issues associated with MQL implementation: effect on peripheral milling process performance and impact on machining economics. ASME 2005 Int. Mech. Eng. Cong. Exposition, American Society of Mechanical Engineers, New York, January 2005, 3–12.
  • Kaynak, Y. (2014) Evaluation of machining performance in cryogenic machining of inconel 718 and comparison with dry and MQL machining. The International Journal of Advanced Manufacturing Technology, 72(5–8): 919–933.
  • Kaynak, Y.; Karaca, H.E.; Noebe, R.D.; Jawahir, I.S. (2013) Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: a comparison of tool-wear performance with dry and MQL machining. Wear, 306(1–2): 51–63.
  • Khan, M.M.A.; Dhar, N.R. (2006) Performance evaluation of minimum quantity lubrication by vegetable oil in terms of cutting force, cutting zone temperature, tool wear, job dimension and surface finish in turning AISI-1060 steel. Journal of Zhejiang University-Science AA, 7(11): 1790–1799.
  • Kim, D.M.; Jo, I.S.; Song, T.J.; Paik, K.S.; Park, H.W. (2017) Experimental tool wear observation of assisted high pressure cryogenic jet in hard turning process. ASME 2017 12th Int. Manufact. Sci. Eng. Conf. Collocated with the JSME/ASME 2017 6th Int. Conf. Mater. Process. American Society of Mechanical Engineers, Los Angeles, CA, June 2017, V001T02A018–V001T02A018.
  • Kishawy, H.A. (2002) An experimental evaluation of cutting temperatures during high speed machining of hardened D2 tool steel. Machining Science and Technology, 6(1): 67–79.
  • Krishnamurthy, G.; Bhowmick, S.; Altenhof, W.; Alpas, A.T. (2017) Increasing efficiency of Ti-alloy machining by cryogenic cooling and using ethanol in MRF. CIRP Journal of Manufacturing Science and Technology, 18: 159–172.
  • Kumar, C.R.V.; Ramamoorthy, B. (2007) Performance of coated tools during hard turning under minimum fluid application. Journal of Materials Processing Technology, 185(1–3): 210–216.
  • Kuram, E.; Simsek, B.; Ozcelik, B.; Demirbas, E.; Askin, S. (2010) Optimization of the cutting fluids and parameters using Taguchi and ANOVA in milling. Proc. World Cong. Eng., WCE, London, June–July 2010.
  • Lawal, S.A.; Choudhury, I.A.; Nukman, Y. (2012) Application of vegetable oil-based metalworking fluids in machining ferrous metals—a review. International Journal of Machine Tools and Manufacture, 52(1): 1–12.
  • Machai, C.; Biermann, D. (2011) Machining of β-titanium-alloy Ti–10V–2Fe–3Al under cryogenic conditions: cooling with carbon dioxide snow. Journal of Materials Processing Technology, 211(6): 1175–1183.
  • Martinez, I.; Tanaka, R.; Yamane, Y.; Sekiya, K.; Yamada, K.; Yamada, S.; Hasegawa, M. (2017) Effect of coating layer loss on the wear rate change of coated carbide tools in turning process. Precision Engineering, 50: 1.
  • Masood, I.; Jahanzaib, M.; Haider, A. (2016) Tool wear and cost evaluation of face milling grade 5 titanium alloy for sustainable machining. Advances in Production Engineering & Management, 11(3): 239.
  • Meyer, D.; Redetzky, M.; Brinksmeier, E. (2017) Microbial-based metalworking fluids in milling operations. CIRP Annals, 66(1): 129–132.
  • Mia, M. (2017) Multi-response optimization of end milling parameters under through-tool cryogenic cooling condition. Measurement, 111: 134–145.
  • Mia, M.; Dhar, N.R. (2018) Effects of duplex jets high-pressure coolant on machining temperature and machinability of Ti-6Al-4V superalloy. Journal of Material Processing Technology, 252: 688–696.
  • Mia, M.; Khan, M.A.; Dhar, N.R. (2017) Study of surface roughness and cutting forces using ANN, RSM, and ANOVA in turning of Ti-6Al-4V under cryogenic jets applied at flank and rake faces of coated WC tool. The International Journal of Advanced Manufacturing Technology, 93(1–4): 975–991.
  • Mia, M.; Razi, M.H.; Ahmad, I.; Mostafa, R.; Rahman, S.M.S.; Ahmed, D.H.; Dey, P.R.; Dhar, N.R. (2017) Effect of time-controlled MQL pulsing on surface roughness in hard turning by statistical analysis and artificial neural network. The International Journal of Advanced Manufacturing Technology, 91(9–12): 3211–3223.
  • Mulyana, T.; Rahim, E.A.; Yahaya, S.N.M. (2017) The influence of cryogenic supercritical carbon dioxide cooling on tool wear during machining high thermal conductivity steel. Journal of Cleaner Production, 164: 950–962.
  • Nagendramma, P.; Kaul, S. (2012) Development of ecofriendly/biodegradable lubricants: an overview. Renewable and Sustainable Energy Reviews, 16(1): 764–774.
  • Peckner, D.; Bernstein, I.M. (1977) Handbook of Stainless Steels. New York: McGraw-Hill Book Co.
  • Poondla, N.; Srivatsan, T.S.; Patnaik, A.; Petraroli, M. (2009) A study of the micro-structure and hardness of two titanium alloys: commercially pure and Ti–6Al–4V. Journal of Alloys and Compounds, 486(1): 162–167.
  • Pusavec, F.; Hamdi, H.; Kopac, J.; Jawahir, I.S. (2011) Surface integrity in cryogenic machining of nickel based alloy—Inconel 718. Journal of Materials Processing Technology, 211(4): 773–783.
  • Quinchia, L.A.; Delgado, M.A.; Reddyhoff, T.; Gallegos, C.; Spikes, H.A. (2014) Tribological studies of potential vegetable oil-based lubricants containing environmentally friendly viscosity modifiers. Tribology International, 69: 110–117.
  • Rahim, E.; Sasahara, H. (2011) An analysis of surface integrity when drilling Inconel 718 using palm oil and synthetic ester under MQL condition. Machining Science and Technology, 15(1): 76–90.
  • Ramana, M.V. (2017) Optimization and influence of process parameters on surface roughness in turning of titanium alloy under different lubricant conditions. Materials Today: Proceedings, 4(8): 8328–8335.
  • Sahu, N.K.; Andhare, A.B.; Raju, R.A. (2018) Evaluation of performance of nanofluid using multiwalled carbon nanotubes for machining of Ti–6Al–4V. Machining Science and Technology, 22: 476–492.
  • Sharma, V.S.; Dogra, M.; Suri, N.M. (2009) Cooling techniques for improved productivity in turning. International Journal of Machine Tools and Manufacture, 49(6): 435–453.
  • Sharma, J.; Sidhu, B.S. (2014) Investigation of effects of dry and near dry machining on AISI D2 steel using vegetable oil. Journal of Cleaner Production, 66: 619–623.
  • Shokrani, A.; Dhokia, V.; Newman, S.T. (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. International Journal of Machine Tools and Manufacture, 57: 83–101.
  • Shokrani, A.; Dhokia, V.; Newman, S.T. (2016) Comparative investigation on using cryogenic machining in Cnc milling of Ti-6Al-4V titanium alloy. Machining Science and Technology, 20(3): 475–494.
  • Singh, G.; Gupta, M.K.; Mia, M.; Sharma, V.S. (2018) Modeling and optimization of tool wear in MQL-assisted milling of Inconel 718 superalloy using evolutionary techniques. The International Journal of Advanced Manufacturing Technology, 97(1–4): 481–494.
  • Sivaiah, P.; Chakradhar, D. (2018) Comparative evaluations of machining performance during turning of 17-4 ph stainless steel under cryogenic and wet machining conditions. Machining Science and Technology, 22: 147–162.
  • Sun, Y.; Huang, B.; Puleo, D.A.; Jawahir, I.S. (2015) Enhanced machinability of Ti-5553 alloy from cryogenic machining: comparison with MQL and flood-cooled machining and modeling. Procedia CIRP, 31: 477–482.
  • Wang, Z.G.; Rahman, M.; Wong, Y.S.; Neo, K.S.; Sun, J.; Tan, C.H.; Onozuka, H. (2009) Study on orthogonal turning of titanium alloys with different coolant supply strategies. The International Journal of Advanced Manufacturing Technology, 42(7–8): 621.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.