246
Views
38
CrossRef citations to date
0
Altmetric
Article

Effect of magneto rheological minimum quantity lubrication on machinability, wettability and tribological behavior in turning of Monel K500 alloy

ORCID Icon & ORCID Icon

References

  • Abraham Raju, R.; Andhare, A.; Sahu, N.K. (2017). Performance of multi walled carbon nano tube based nanofluid in turning operation. Materials and Manufacturing Processes, 32(13): 1490–1496. Voldoi:10.1080/10426914.2017.1279291
  • Alberts, M.; Kalaitzidou, K.; Melkote, S. (2009). An investigation of graphite nanoplatelets as lubricant in grinding. International Journal of Machine Tools and Manufacture, 49(12–13): 966–970. doi:10.1016/j.ijmachtools.2009.06.005
  • Asrul, M.; Zulkifli, N.W.M.; Masjuki, H.H.; Kalam, M.A. (2013). Tribological properties and lubricant mechanism of nanoparticle in engine oil. Procedia Engineering, 68: 320–325. doi:10.1016/j.proeng.2013.12.186
  • Attanasio, A.; Gelfi, M.; Giardini, C.; Remino, C. (2006). Minimal quantity lubrication in turning. Wear, 260(3): 333–338. doi:10.1016/j.wear.2005.04.024
  • Berman, D.; Erdemir, A.; Sumant, A.V. (2014). Graphene as a protective coating and superior lubricant for electrical contacts. Applied Physics Letters 105(23): 231907. doi:10.1063/1.4903933
  • Chen, S.; Shen, B.; Chen, Y.; Sun, F. (2017). Synergistic friction-reducing and anti-wear behaviors of graphene with micro- and nano-crystalline diamond films. Diamond and Related Materials, 73: 25–32.
  • Doshi, S.J. (2017). Conceptual review on effects of application of nano particle inclusion on tool wear during machining of difficult to cut materials. International Journal of Advance Engineering and Research Development, 2017: 2348–4470.
  • Enomoto, T.; Sugihara, T. (2010). Improving anti-adhesive properties of cutting tool surfaces by nano-/micro-textures. Cirp Annals, 59(1): 597–600. doi:10.1016/j.cirp.2010.03.130
  • Gajrani, K.K.; Suvin, P.S.; Kailas, S.V.; Mamilla, R.S. (2019). Thermal, rheological, wettability and hard machining performance of MoS2 and CaF2 based minimum quantity hybrid nano-green cutting fluids. Journal of Materials Processing Technology, 266: 125–139. doi:10.1016/j.jmatprotec.2018.10.036
  • Geim, A.K.; Novoselov, K.S. (2007). The rise of graphene. Nature Materials, 6(3): 183–191. doi:10.1038/nmat1849
  • Gopala Krishna, A.; Babu Rao, T. (2016). Performance assessment of carbon nano tube based cutting fluid in machining process. International Journal of Materials and Metallurgical Engineering, 10(8): 1059–1062.
  • Gutnichenko, O.; Bushlya, V.; Bihagen, S.; Ståhl, J.-E. 2018. Influence of GnP additive to vegetable oil on machining performance when MQCL-assisted turning alloy 718. Procedia Manufacturing, 25: 330–337. doi:10.1016/j.promfg.2018.06.091
  • Hadad, M.; Sadeghi, B. (2013). Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy. Journal of Cleaner Production, 54: 332–343. doi:10.1016/j.jclepro.2013.05.011
  • Hernández Battez, A.; González, R.; Viesca, J.L.; Fernández, J.E.; Día Fernández, J.M.; Machado Chou, A.R.; Riba, J. (2008). CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 265(3–4): 422–428. doi:10.1016/j.wear.2007.11.013
  • Iowa Waster Reduction Center. (2003). Cutting fluid management: small machining operations. Iowa Waste Reduction Center Book Gallery, 12: 35–45.
  • Kalita, P.; Malshe, A.P.; Arun Kumar, S.; Yoganath, V.G.; Gurumurthy, T. (2012). Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubricants. Journal of Manufacturing Processes, 14(2): 160–166. doi:10.1016/j.jmapro.2012.01.001
  • Kannan, K.T.; Ramesh Babu, S. (2017). Tribological behavior of modified jojoba oil with graphene nanoparticle as additive in SAE20W40 oil using pin on disc tribometer. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(17): 1842–1848.
  • Kannan, K.T.; Rameshbabu, S. (2018). Tribological properties of modified jojoba oil as probable base stoke of engine lubricant. Journal of Mechanical Science and Technology, 32(4): 1739–1747. doi:10.1007/s12206-018-0330-6
  • Kaynak, Y.; Lu, T.; Jawahir, I.S. (2014). Cryogenic machining-induced surface integrity: a review and comparison with dry, MQL, and flood-cooled machining. Machining Science and Technology, 18(2): 149–198.
  • Khandekar, S.; Sankar, M.R.; Agnihotri, V.; Ramkumar, J. (2012). Nano-cutting fluid for enhancement of metal cutting performance. Materials and Manufacturing Processes, 27(9): 963–965. doi:10.1080/10426914.2011.610078
  • Kukliński Bartkowska, M.A.; Przestacki, D. (2018). Microstructure and selected properties of Monel 400 alloy after laser heat treatment and laser boriding using diode laser. The International Journal of Advanced Manufacturing Technology, 98(9–12): 3005–3017. doi:10.1007/s00170-018-2343-9
  • Kumar Dubey, M.; Bijwe, J.; Ramakumar, S.S.V. (2013). PTFE based nano-lubricants. Wear 306(1–2): 80–88. doi:10.1016/j.wear.2013.06.020
  • Kumar Parida, A.; Maity, K. (2019). Modeling of machining parameters affecting flank wear and surface roughness in hot turning of Monel-400 using response surface methodology (RSM). Measurement, 137: 375–381. [Mismatch] doi:10.1016/j.measurement.2019.01.070
  • Lee, C.-G.; Hwang, Y.-J.; Choi, Y.-M.; Lee, J.-K.; Choi, C.; Oh, J.-M. (2009). A study on the tribological characteristics of graphite nano lubricants. International Journal of Precision Engineering and Manufacturing, 10(1): 85–90. doi:10.1007/s12541-009-0013-4
  • Li, M.; Yu, T.; Zhang, R.; Yang, L.; Ma, Z.; Li, B.; Wang, X.; Wang, W.; Zhao, J. (2020). Experimental evaluation of an eco-friendly grinding process combining minimum quantity lubrication and graphene-enhanced plant-oil-based cutting fluid. Journal of Cleaner Production, 244: 118747–118787. doi:10.1016/j.jclepro.2019.118747
  • Lv, T.; Huang, S.; Liu, E.; Ma, Y.; Xu, X. (2018). Tribological and machining characteristics of an electrostatic minimum quantity lubrication (EMQL) technology using graphene nano-lubricants as cutting fluids. Journal of Manufacturing Processes, 34: 225–237. doi:10.1016/j.jmapro.2018.06.016
  • Mang, T.; Dresel, W. (2017). Lubricants and lubrication ISBN: 978-3-527-32670-9.
  • Manoj Kumar, K.; Ghosh, A. (2016). Assessment of cooling-lubrication and wettability characteristics of nano-engineered sunflower oil as cutting fluid and its impact on SQCL grinding performance. Journal of Materials Processing Technology, 237: 55–64. doi:10.1016/j.jmatprotec.2016.05.030
  • Manukyan, S.; Schneider, M. (2016). Experimental investigation of wetting with magnetic fluids. Langmuir: The ACS Journal of Surfaces and Colloids, 32(20): 5135–5140. doi:10.1021/acs.langmuir.5b04737
  • Maruda, R.W.; Krolczyk, G.M.; Niesłony, P.; Krolczyk, J.B.; Legutko, S. (2016). Chip formation zone analysis during the turning of austenitic stainless steel 316L under MQCL cooling condition. Procedia Engineering, 149: 297–304. doi:10.1016/j.proeng.2016.06.670
  • Nath, C.; Kapoor, S.G.; Srivastava, A.K. (2017). Finish turning of Ti-6Al-4V with the atomization-based cutting fluid (ACF) spray system. Journal of Manufacturing Processes, 28: 464–471.
  • Penkov, O.; Kim, H.-J.; Kim, H.-J.; Kim, D.-E. (2014). Tribology of graphene: a review. International Journal of Precision Engineering and Manufacturing, 15(3): 577–585. doi:10.1007/s12541-014-0373-2
  • Prabu, L.; Saravanakumar, N.; Rajaram, G. (2018). Influence of Ag nanoparticles for the anti-wear and extreme pressure properties of the mineral oil based nano-cutting fluid. Tribology in Industry, 40(3): 440–447. doi:10.24874/ti.2018.40.03.10
  • Rahimi, S.; Weihs, D. (2016). Surface tension of magneto-rheological fluids. Journal of Magnetics, 21(2): 261–265. doi:10.4283/JMAG.2016.21.2.261
  • Sales, W.F.; Diniz, A.E.; Machado, A.R. (2001). Application of cutting fluids in machining processes. Journal of the Brazilian Society of Mechanical Sciences, 23(2): 227–240. ISSN 0100-7386. doi:10.1590/S0100-73862001000200009
  • Sam Paul, P.; Varadarajan, B.A.S.; Mohanasundaram, S. (2015). Effect of magnetorheological fluid on tool wear during hard turning with minimal fluid application. Achieves of Civil and Mechanical Engineering,15: 125–132.
  • Sayuti, M.; Sarhan, A.A.D.; Salem, F. (2014). Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption. Journal of Cleaner Production, 67: 265–276. doi:10.1016/j.jclepro.2013.12.052
  • Sharma, A.K.; Tiwari, A.K.; Dixit, A.R. (2016). Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: a comprehensive review. Journal of Cleaner Production, 127: 1–18. doi:10.1016/j.jclepro.2016.03.146
  • Sharma, A.K.; Tiwari, A.K.; Dixit, A.R. (2015). Progress of nano fluid application in machining: a review. Materials and Manufacturing Processes, 30(7): 813–828. doi:10.1080/10426914.2014.973583
  • Sirin, S.; Kivak, T. (2019). Performances of different eco-friendly nanofluid lubricants in the milling of Inconel X-750 superalloy. Tribology International, 137: 180–192.
  • Thiyagu, M.; Karunamoorthy, L.; Arunkumar, N. (2019). Thermal and tool wear characterization of graphene oxide coated through magnetorheological fluids on cemented carbide tool inserts. Archives of Civil and Mechanical Engineering, 19(4): 1043–1055. doi:10.1016/j.acme.2019.05.005
  • Verdier, S.; Coutinho, J.A.P.; Silva, A.M.S.; Alkilde, O.F.; Hansen, J.A. (2009). A critical approach to viscosity index. Fuel, 88(11): 2199–2206. doi:10.1016/j.fuel.2009.05.016
  • Wang, B.; Liu, Z.; Su, G.; Song, Q.; Ai, X. (2015). Investigations of critical cutting speed and Ductileto–Brittle transition mechanism for workpiece material in ultra high speed machining. International Journal of Mechanical Sciences, 104: 44–59. doi:10.1016/j.ijmecsci.2015.10.004
  • Yi, S.; Li, G.; Ding, S.; Mo, J. (2017). Performance and mechanisms of graphene oxide suspended cutting fluid in the drilling of titanium alloy Ti-6Al-4V. Journal of Manufacturing Processes, 29: 182–193. doi:10.1016/j.jmapro.2017.07.027
  • Yildirim, C.V.; Sarikaya, M.; Kivak, T.; Sirin, S. (2019). The effect of addition of HBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625. Tribology International, 134: 443–456.
  • Zainal, N.A.; Zulkifli, N.W.M.; Gulzar, M.; Masjuki, H.H. (2018). A review on the chemistry, production, and technological potential of biobased lubricants. Renewable and Sustainable Energy Reviews, 82: 80–102. doi:10.1016/j.rser.2017.09.004
  • Zhang, W.L.; Choi, H.J. (2015). Graphene/graphene oxide: A new material for electrorheological and magnetorheological applications. Journal of Intelligent Material Systems and Structures, 26(14): 1826–1835. doi:10.1177/1045389X15577655
  • Zhang, S.; Han, X.; Tan, Y.; Liang, K. (2018). Effects of hydrophilicity/lipophilicity of nano-TiO2 on surface tension of TiO2–water nanofluids. Chemical Physics Letters, 691: 135–140. doi:10.1016/j.cplett.2017.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.