539
Views
1
CrossRef citations to date
0
Altmetric
Articles

Influence of cutting tool material on machinability of Inconel 718 superalloy

, &

References

  • Akhtar, W.; Sun, J.; Sun, P.; Chen, W.; Saleem, Z. (2014) Tool wear mechanisms in the machining of nickel based super-alloys: A review. Frontiers of Mechanical Engineering, 9(2): 106–119. doi:10.1007/s11465-014-0301-2
  • Amini, S.; Fatemi, M.H.; Atefi, R. (2014) High speed turning of Inconel 718 using ceramic and carbide cutting tools. Arabian Journal for Science and Engineering, 39(3): 2323–2330. doi:10.1007/s13369-013-0776-x
  • Aramesh, M.; Montazeri, S.; Veldhuis, S.C. (2018) A novel treatment for cutting tools for reducing the chipping and improving tool life during machining of Inconel 718. Wear, 414–415: 79–88. doi:10.1016/j.wear.2018.08.002
  • Arunachalam, R.; Mannan, M.A. (2000) Machinability of nickel-based high temperature alloys. Machining Science and Technology 4(1): 127–168. doi:10.1080/10940340008945703
  • Bart, J.C.J.; Gucciardi, E.; Cavallaro, S. (2013) Environmental life-cycle assessment (LCA) of lubricants, book chapter. In: Biolubricants: Science and Technology, pp. 527–564, Woodhead Publishing Ltd, Cambridge, UK.
  • Bayoumi, A.E.; Xie, J.Q. (1995) Some metallurgical aspects of chip formation in cutting Ti-6wt.%Al-4wt%V alloy. Materials Science and Engineering: A, 190(1–2): 173–180. doi:10.1016/0921-5093(94)09595-N
  • Behera, B.C.; Alemayehu, H.; Ghosh, S.; Rao, P.V. (2017) A comparative study of recent lubri-coolant strategies for turning of Ni-based superalloy. Journal of Manufacturing Processes, 30: 541–552. doi:10.1016/j.jmapro.2017.10.027
  • Belhadi, S.; Mabrouki, T.; Rigal, J.-F.; Boulanouar, L. (2005) Experimental and numerical study of chip formation during straight turning of hardened AISI 4340 steel. Proceedings of IMechE: Part B Journal of Engineering Manufacture, 219(7): 515–524. doi:10.1243/095440505X32445
  • Bhatt, A.; Attia, H.; Vargas, R.; Thomson, V. (2010) Wear mechanisms of WC coated and uncoated tools in finish turning of Inconel 718. Tribology International, 43(5–6): 1113–1121. doi:10.1016/j.triboint.2009.12.053
  • Bushlya, V.; Zhou, J.; Ståhl, J.E. (2012) Effect of cutting conditions on machinability of superalloy Inconel 718 during high speed turning with coated and uncoated PCBN tools. Procedia CIRP, 3: 370–375. doi:10.1016/j.procir.2012.07.064
  • Bushlya, V.; Zhou, J.M.; Lenrick, F.; Avdovic, P.; Ståhl, J.E. (2011) Characterization of white layer generated when turning aged Inconel 718. Procedia Engineering, 19: 60–66. doi:10.1016/j.proeng.2011.11.080
  • Cantero, J.L.; Díaz-Álvarez, J.; Miguélez, M.H.; Marín, N.C. (2013) Analysis of tool wear patterns in finishing turning of Inconel 718. Wear, 297(1–2): 885–894. doi:10.1016/j.wear.2012.11.004
  • Chen, X.; Xu, J.; Xiao, Q. (2015) Cutting performance and wear characteristics of Ti (C, N)-based cermet tool in machining hardened steel. International Journal of Refractory Metals and Hard Materials, 52: 143–150. doi:10.1016/j.ijrmhm.2015.06.006
  • Coelho, R.T.; Silva, L.R.; Braghini, A.; Jr.; Bezerra, A.A. (2004) Some effects of cutting edge preparation and geometric modifications when turning INCONEL 718™ at high cutting speeds. Journal of Materials Processing Technology, 148(1): 147–153. doi:10.1016/j.jmatprotec.2004.02.001
  • Cotterell, M.; Byrne, G. (2008) Dynamics of chip formation during orthogonal cutting of titanium alloy Ti-6Al-4V. CIRP Annals, 57(1): 93–96. doi:10.1016/j.cirp.2008.03.007
  • D’Errico, G.E.; Calzavarini, R.; Vicenzi, B. (1998) Influences of PVD coatings on cermet tool life in continuous and interrupted turning. Journal of Materials Processing Technology, 78(1–3): 53–58. doi:10.1016/S0924-0136(97)00463-9
  • Darwish, S.M. (2000) Machining of difficult-to-cut materials with bonded tools. International Journal of Adhesion and Adhesives, 20(4): 279–289. doi:10.1016/S0143-7496(99)00058-5
  • Das, A.; Patel, S.K.; Biswal, B.B.; Das, S.R. (2019) Machinability investigation and cost estimation during finish dry hard turning of AISI 4340 steel with untreated and cryo treated cermet inserts. Journal of Superhard Materials, 41(4): 247–264. doi:10.3103/S1063457619040051
  • Das, S.R.; Panda, A.; Dhupal, D. (2018) Hard turning of AISI 4340 steel using coated carbide insert: Surface roughness, tool wear, chip morphology and cost estimation. Materials Today: Proceedings, 5(2): 6560–6569. doi:10.1016/j.matpr.2017.11.311
  • Devillez, A.; Le Coz, G.; Dominiak, S.; Dudzinski, D. (2011) Dry machining of Inconel 718, workpiece surface integrity. Journal of Materials Processing Technology, 211(10): 1590–1598. doi:10.1016/j.jmatprotec.2011.04.011
  • Diniz, A.E.; Machado, Á.R.; Corrêa, J.G. (2016) Tool wear mechanisms in the machining of steels and stainless steels. The International Journal of Advanced Manufacturing Technology, 87(9–12): 3157–3168. doi:10.1007/s00170-016-8704-3
  • Dong, G.; Zhaopeng, H.; Rongdi, H.; Yanli, C.; Muguthu, J.N. (2011) Study of Cutting Deformation in Machining Nickel-Based Alloy Inconel 718. International Journal of Machine Tools and Manufacture, 51(6): 520–527. doi:10.1016/j.ijmachtools.2011.02.011
  • El-Bagoury, N.; Hessien, M.M.; Alsawat, M.; Mahmoud, M.H.H.; Alanazi, A.K.; Alshanbari, N.A. (2019) Optimization of microstructure and mechanical properties of hipped Inconel 718 by various heat treatment processes. Metallography, Microstructure, and Analysis, 8(5): 642–655. doi:10.1007/s13632-019-00568-7
  • Ezugwu, E.O. (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. International Journal of Machine Tools and Manufacture, 45(12/13): 1353–1367. doi:10.1016/j.ijmachtools.2005.02.003
  • Ezugwu, E.O.; Bonney, J. (2005) Finish machining of nickel-base Inconel 718 alloy with coated carbide tool under conventional and high-pressure coolant supplies. Tribology Transactions 48(1): 76–81. doi:10.1080/05698190590899958
  • Ezugwu, E.O.; Bonney, J.; Da Silva, R.B.; Çakir, O. (2007) Surface integrity of finished turned Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies. International Journal of Machine Tools and Manufacture, 47(6): 884–891. doi:10.1016/j.ijmachtools.2006.08.005
  • Ezugwu, E.O.; Wang, Z.M.; Machado, A.R. (2000) Wear of coated carbide tools when machining nickel (Inconel 718) and titanium base (Ti-6A1-4V) alloys. Tribology Transactions, 43(2): 263–268. doi:10.1080/10402000008982338
  • Ezugwu, E.O.; Wang, Z.M.; Okeke, C.I. (1999) Tool life and surface integrity when machining Inconel 718 with PVD and CVD coated tools. Tribology Transactions, 42(2): 353–360. doi:10.1080/10402009908982228
  • Fan, Y.H.; Hao, Z.P.; Lin, J.Q.; Yu, Z.X. (2014) Material response at tool–chip interface and its effects on tool wear in turning Inconel 718. Materials and Manufacturing Processes, 29(11–12): 1446–1452. doi:10.1080/10426914.2014.921701
  • Gao, T.; Li, C.; Zhang, Y.; Yang, M.; Jia, D.; Jin, T.; Hou, Y.; Li, R. (2019) Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribology International, 131: 51–63. doi:10.1016/j.triboint.2018.10.025
  • Garćia, J. (2013) Effect of cubic carbide composition and sintering parameters on the formation of wear resistant surfaces on cemented carbides. International Journal of Refractory Metals and Hard Materials, 36: 66–71.
  • Garćia, J.; Ciprés, V.C.; Blomqvist, A.; Kaplan, B. (2019) Cemented carbide microstructures: A review. International Journal of Refractory Metals and Hard Materials, 80: 40–68. doi:10.1016/j.ijrmhm.2018.12.004
  • Gayda, J.; Gabb, T.P. (2008) Fatigue behavior of a third generation pm disk superalloy, NASA Technical Reports Server (Ntrs). NASA/TM, 2008: 215462.
  • Ginting, A.; Nouari, M. (2009) Surface integrity of dry machined titanium alloys. International Journal of Machine Tools and Manufacture, 49(3/4): 325–332. doi:10.1016/j.ijmachtools.2008.10.011
  • Griffiths, B.J. (1987) Mechanisms of white layer generation with reference to machining and deformation processes. Journal of Tribology, 109(3): 525–530. doi:10.1115/1.3261495
  • Grzesik, W.; Niesłony, P.; Habrat, W.; Sieniawski, J.; Laskowski, P. (2018) Investigation of tool wear in the turning of Inconel 718 superalloy in terms of process performance and productivity enhancement. Tribology International, 118: 337–346. doi:10.1016/j.triboint.2017.10.005
  • Hegab, H.; Umer, U.; Soliman, M.; Kishawy, H.A. (2018) Effects of nano-cutting fluids on tool performance and chip morphology during machining Inconel 718. The International Journal of Advanced Manufacturing Technology, 96(9–12): 3449–3458. doi:10.1007/s00170-018-1825-0
  • Hoier, P.; Malakizadi, A.; Stuppa, P.; Cedergren, S.; Klement, U. (2018) Microstructural characteristics of alloy 718 and waspaloy and their influence on flank wear during turning. Wear, 400–401: 184–193. doi:10.1016/j.wear.2018.01.011
  • Houchuan, Y.; Zhitong, C.; ZiTong, Z. (2015) Influence of cutting speed and tool wear on the surface integrity of the titanium alloy Ti-1023 during milling. The International Journal of Advanced Manufacturing Technology, 78(5–8): 1113–1126. doi:10.1007/s00170-014-6593-x
  • Hua, J.; Shivpuri, R. (2004) Prediction of chip morphology and segmentation during the machining of titanium alloys. Journal of Materials Processing Technology, 150(1–2): 124–133. doi:10.1016/j.jmatprotec.2004.01.028
  • Jia, D.; Li, C.; Zhang, Y.; Yang, M.; Zhang, X.; Li, R.; Ji, H. (2019) Experimental evaluation of surface topographies of NMQL grinding ZrO2 ceramics combining multiangle ultrasonic vibration. The International Journal of Advanced Manufacturing Technology, 100(1–4): 457–473. doi:10.1007/s00170-018-2718-y
  • Kaynak, Y. (2014) Evaluation of machining performance in cryogenic machining of Inconel 718 and comparison with dry and MQL machining. The International Journal of Advanced Manufacturing Technology, 72(5–8): 919–933. doi:10.1007/s00170-014-5683-0
  • Khamel, S.; Ouelaa, N.; Bouacha, K. (2012) Analysis and prediction of tool wear, surface roughness and cutting forces in hard turning with CBN tool. Journal of Mechanical Science and Technology, 26(11): 3605–3616. doi:10.1007/s12206-012-0853-1
  • Knorovsky, G.A.; Cieslak, M.J.; Headley, T.J.; Romig, A.D.; Hammetter, W.F. (1989) Inconel 718: A solidification diagram. Metallurgical Transactions A, 20(10): 2149–2158. doi:10.1007/BF02650300
  • Kumar, B.M.; Kumar, J.R.; Basu, B. (2007) Crater wear mechanisms of TiCN–Ni–WC cermets during dry machining. International Journal of Refractory Metals and Hard Materials, 25(5–6): 392–399. doi:10.1016/j.ijrmhm.2006.12.001
  • Kursuncu, B.; Caliskan, H.; Guven, S.Y.; Panjan, P. (2018) Improvement of cutting performance of carbide cutting tools in milling of the Inconel 718 superalloy using multilayer nanocomposite hard coating and cryogenic heat treatment. The International Journal of Advanced Manufacturing Technology, 97(1–4): 467–479. doi:10.1007/s00170-018-1931-z
  • Kwon, W.T.; Park, J.S.; Kim, S.W.; Kang, S. (2004) Effect of WC and Group IV carbides on the cutting performance of Ti (C, N) cermet tools. International Journal of Machine Tools and Manufacture, 44(4): 341–346. doi:10.1016/j.ijmachtools.2003.10.023
  • Lay, S. (2013) HRTEM investigation of dislocation interactions in WC. International Journal of Refractory Metals and Hard Materials, 41: 416–421. doi:10.1016/j.ijrmhm.2013.05.017
  • Liao, Y.S.; Shiue, R.H. (1996) Carbide tool wear mechanism in turning of Inconel 718 superalloy. Wear, 193(1): 16–24. doi:10.1016/0043-1648(95)06644-6
  • Lorentzon, J.; Järvstråt, N.; Josefson, B.L. (2009) Modelling chip formation of alloy 718. Journal of Materials Processing Technology, 209(10): 4645–4653. doi:10.1016/j.jmatprotec.2008.11.029
  • Luo, S.Y.; Liao, Y.S.; Tsai, Y.Y. (1999) Wear characteristics in turning high hardness alloy steel by ceramic and CBN tools. Journal of Materials Processing Technology, 88(1–3): 114–121. doi:10.1016/S0924-0136(98)00376-8
  • Narutaki, N.; Yamane, Y.; Hayashi, K.; Kitagawa, T.; Uehara, K. (1993) High-speed machining of Inconel 718 with ceramic tools. CIRP Annals, 42(1): 103–106. doi:10.1016/S0007-8506(07)62402-0
  • Östberg, G.; Andrén, H.O. (2006) Microstructural changes during wear by plastic deformation of cemented carbide and cermet cutting inserts. Metallurgical and Materials Transactions A, 37(5): 1495–1506. doi:10.1007/s11661-006-0094-y
  • Österle, W.; Li, P.X. (1997) Mechanical and thermal response of a nickel-base superalloy upon grinding with high removal rates. Materials Science and Engineering: A, 238(2): 357–366. doi:10.1016/S0921-5093(97)00457-7
  • Özel, T.; Ulutan, D. (2014) Effects of machining parameters and tool geometry on serrated chip formation, specific forces and energies in orthogonal cutting of nickel-based super alloy Inconel 100. Proceedings of IMechE. Part B: Journal of Engineering Manufacture, 228(7): 673–686. doi:10.1177/0954405413510291
  • Panda, A.; Das, S.R.; Dhupal, D. (2018) Experimental investigation, modelling and optimization in hard turning of high strength low alloy steel (AISI 4340). Matériaux & Techniques, 106(4): 404. doi:10.1051/mattech/2018054
  • Pawade, R.S.; Joshi, S.S. (2011) Mechanism of chip formation in high-speed turning of Inconel 718. Machining Science and Technology Journal, 15(1): 132–152. doi:10.1080/10910344.2011.557974
  • Pawade, R.S.; Joshi, S.S.; Brahmankar, P.K.; Rahman, M. (2007) An investigation of cutting forces and surface damage in high-speed turning of Inconel 718. Journal of Materials Processing Technology, 192–193: 139–146. doi:10.1016/j.jmatprotec.2007.04.049
  • Pawade, R.S.; Sonawane, H.A.; Joshi, S.S. (2009) An analytical model to predict specific shear energy in high-speed turning of Inconel 718. International Journal of Machine Tools and Manufacture, 49(12–13): 979–990. doi:10.1016/j.ijmachtools.2009.06.007
  • Peng, Y.; Miao, H.; Peng, Z. (2013) Development of TiCN-based cermets: Mechanical properties and wear mechanism. International Journal of Refractory Metals and Hard Materials, 39(1): 78–89. doi:10.1016/j.ijrmhm.2012.07.001
  • Poulachon, G.; Bandyopadhyay, B.P.; Jawahir, I.S.; Pheulpin, S.; Seguin, E. (2003) The influence of the microstructure of hardened tool steel workpiece on the wear of PCBN cutting tools. International Journal of Machine Tools and Manufacture, 43(2): 139–144. doi:10.1016/S0890-6955(02)00170-0
  • Poulachon, G.; Moisan, A.L. (2000) Hard turning: Chip formation mechanisms and metallurgical aspects. Journal of Manufacturing Science and Engineering, 122(3): 406–412. doi:10.1115/1.1285891
  • Praveen, K.V.U.; Sastry, G.V.S.; Singh, V. (2008) Workhardening behavior of the Ni-Fe based superalloy IN718. Metallurgical and Materials Transactions A, 39(1): 65–78. doi:10.1007/s11661-007-9375-3
  • Rahman, M.; Seah, W.K.H.; Teo, T.T. (1997) The machinability of Inconel 718. Journal of Materials Processing Technology, 63(1–3): 199–204. doi:10.1016/S0924-0136(96)02624-6
  • Rajabi, A.; Ghazali, M.J.; Daud, A.R. (2015) Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet–A review. Materials & Design, 67: 95–106. doi:10.1016/j.matdes.2014.10.081
  • Ren, X.; Liu, Z. (2016) Influence of cutting parameters on work hardening behavior of surface layer during turning superalloy Inconel 718. The International Journal of Advanced Manufacturing Technology, 86(5–8): 2319–2327. doi:10.1007/s00170-016-8350-9
  • Schwach, D.W.; Guo, Y.B. (2006) A fundamental study on the impact of surface integrity by hard turning on rolling contact fatigue. International Journal of Fatigue, 28(12): 1838–1844. doi:10.1016/j.ijfatigue.2005.12.002
  • Sharman, A.R.C.; Hughes, J.I.; Ridgway, K. (2004) Workpiece surface integrity and tool life issues when turning Inconel 718™ nickel based superalloy. Machining Science and Technology, 8(3): 399–414. doi:10.1081/MST-200039865
  • Sreejith, P.S.; Ngoi, B.K.A. (2000) Dry machining: Machining of the future. Journal of Materials Processing Technology, 101(1–3): 287–291. doi:10.1016/S0924-0136(00)00445-3
  • Sugihara, T.; Takemura, S.; Enomoto, T. (2016) Study on high-speed machining of Inconel 718 focusing on tool surface topography of CBN cutting tool. The International Journal of Advanced Manufacturing Technology, 87(1–4): 9–17. doi:10.1007/s00170-015-8006-1
  • Thakur, D.G.; Ramamoorthy, B.; Vijayaraghavan, L. (2009a) Study on the machinability characteristics of superalloy Inconel 718 during high speed turning. Materials & Design, 30(5): 1718–1725. doi:10.1016/j.matdes.2008.07.011
  • Thakur, D.G.; Ramamoorthy, B.; Vijayaraghavan, L. (2009b) Machinability investigation of Inconel 718 in high-speed turning. The International Journal of Advanced Manufacturing Technology, 45(5–6): 421–429. doi:10.1007/s00170-009-1987-x
  • Toth, L.E. (1971) Refractory Materials, Vol 7: Transition Metal Carbides and Nitrides. Academic Press, New York.
  • Tucho, W.M.; Cuvillier, P.; Sjolyst-Kverneland, A.; Hansen, V. (2017) Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Materials Science and Engineering: A, 689: 220–232. doi:10.1016/j.msea.2017.02.062
  • Ulutan, D.; Ozel, T. (2011) Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools and Manufacture, 51(3): 250–280. doi:10.1016/j.ijmachtools.2010.11.003
  • Vagnorius, Z.; Sørby, K. (2011) Effect of high-pressure cooling on life of SiAlON tools in machining of Inconel 718. The International Journal of Advanced Manufacturing Technology, 54(1–4): 83–92. doi:10.1007/s00170-010-2944-4
  • Wang, C.; Xie, Y.; Zheng, L.; Qin, Z.; Tang, D.; Song, Y. (2014) Research on the chip formation mechanism during the high-speed milling of hardened steel. International Journal of Machine Tools and Manufacture, 79: 31–48. doi:10.1016/j.ijmachtools.2014.01.002
  • Xavior, M.A.; Manohar, M.; Madhukar, P.A.; Jeyapandiarajan, P. (2017) Experimental investigation of work hardening, residual stress and microstructure during machining Inconel 718. Journal of Mechanical Science and Technology, 31(10): 4789–4794. doi:10.1007/s12206-017-0926-2
  • Xavior, M.A.; Patil, M.; Maiti, A.; Raj, M.; Lohia, N. (2016) Machinability studies on Inconel 718. IOP Conference Series: Materials Science and Engineering, 149(1): 012019. doi:10.1088/1757-899X/149/1/012019
  • Yallese, M.A.; Chaoui, K.; Zeghib, N.; Boulanouar, L.; Rigal, J.F. (2009) Hard machining of hardened bearing steel using cubic boron nitride tool. Journal of Materials Processing Technology, 209(2): 1092–1104. doi:10.1016/j.jmatprotec.2008.03.014
  • Yang, M.; Li, C.; Zhang, Y.; Jia, D.; Li, R.; Hou, Y.; Cao, H.; Wang, J. (2019) Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceramics International, 45(12): 14908–14920. doi:10.1016/j.ceramint.2019.04.226
  • Zhang, S.; Li, J.; Zhu, X.; Lv, H. (2013) Saw-tooth chip formation and its effect on cutting force fluctuation in turning of Inconel 718. International Journal of Precision Engineering and Manufacturing, 14(6): 957–963. doi:10.1007/s12541-013-0126-7
  • Zhao, B.; Liu, H.; Huang, C.; Wang, J.; Wang, B.; Hou, Y. (2019) Cutting performance and crack self-healing mechanism of a novel ceramic cutting tool in dry and high-speed machining of Inconel 718. International Journal of Advanced Manufacturing Technology. 102: 3431–3438. doi:10.1007/s00170-019-03386-x
  • Zhou, J.; Bushlya, V.; Avdovic, P.; Ståhl, J.E. (2012) Study of surface quality in high speed turning of Inconel 718 with uncoated and coated CBN tools. The International Journal of Advanced Manufacturing Technology, 58(1–4): 141–151. doi:10.1007/s00170-011-3374-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.