175
Views
1
CrossRef citations to date
0
Altmetric
Articles

Performance analysis of copper-based MWCNT composite coated 316L SS tool in electro discharge machining

&

References

  • An, Z.; Toda, M.; Ono, T. (2016) Comparative investigation into surface charged multi-walled carbon nanotubes reinforced cu nanocomposites for interconnect applications. Composites Part B: Engineering, 95: 137–143. doi:10.1016/j.compositesb.2016.03.086
  • Awad, I.E. (2016) Mechanical Integrity and Fabrication of Carbon Nanotube/Copper-based Through Silicon Via. Doctoral Dissertations, University of Connecticut.
  • Berber, S.; Kwon, Y.K.; Tománek, D. (2000) Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 84(20): 4613–4616. doi:10.1103/PhysRevLett.84.4613
  • Chai, G.; Chen, Q. (2010) Characterization study of the thermal conductivity of carbon nanotube copper nanocomposites. Journal of Composite Materials, 44(24): 2863–2873. doi:10.1177/0021998310371530
  • Cogun, C.; Esen, Z.; Genc, A.; Cogun, F.; Akturk, N. (2016) Effect of powder metallurgy Cu-B4C electrodes on workpiece surface characteristics and machining performance of electric discharge machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(12): 2190–2203. doi:10.1177/0954405415593049
  • Czelusniak, T.; Amorim, F.L.; Higa, C.F.; Lohrengel, A. (2014) Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering. The International Journal of Advanced Manufacturing Technology, 72(912): 1503–1512. doi:10.1007/s00170-014-5765-z
  • Dai, H.; Javey, A.; Pop, E.; Mann, D.; Kim, W.; Lu, Y. (2006) Electrical transport properties and field effect transistors of carbon nanotubes. Nano, 01(01): 1–13. doi:10.1142/S1793292006000070
  • Feng, Y.; McGuire, G.E.; Shenderova, O.A.; Ke, H.; Burkett, S.L. (2016) Fabrication of copper/carbon nanotube composite thin films by periodic pulse reverse electroplating using nanodiamond as a dispersing agent. Thin Solid Films, 615: 116–121. doi:10.1016/j.tsf.2016.07.015
  • Ghosh, A.; Mallik, A.K. (1991) Manufacturing Science. Affiliated East-West Press, New Delhi.
  • Gill, A.S.; Kumar, S. (2016) Surface roughness and microhardness evaluation for EDM with Cu–Mn powder metallurgy tool. Materials and Manufacturing Processes, 31(4): 514–521. doi:10.1080/10426914.2015.1070412
  • Gülcan, O.; Uslan, İ.; Usta, Y.; Çoğun, C. (2016) Performance and surface alloying characteristics of Cu–Cr and Cu–Mo powder metal tool electrodes in electrical discharge machining. Machining Science and Technology Technology, 20(4): 523–546. doi:10.1080/10910344.2016.1191031
  • Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature, 354(6348): 56–58. doi:10.1038/354056a0
  • Janas, D.; Liszka, B. (2018) Copper matrix nanocomposites based on carbon nanotubes or graphene. Materials Chemistry Frontiers, 2(1): 22–35. doi:10.1039/C7QM00316A
  • Jayathilaka, W.A.D.M.; Chinnappan, A.; Ramakrishna, S. (2017) A review of properties influencing the conductivity of CNT/Cu composites and their applications in wearable/flexible electronics. Journal of Materials Chemistry C, 5(36): 9209–9237. doi:10.1039/C7TC02965A
  • Khanra, A.K.; Sarkar, B.R.; Bhattacharya, B.; Pathak, L.C.; Godkhindi, M.M. (2007) Performance of ZrB2–Cu composite as an EDM electrode. Journal of Materials Processing Technology, 183(1): 122–126. doi:10.1016/j.jmatprotec.2006.09.034
  • Klocke, F.; Schwade, M.; Klink, A.; Veselovac, D. (2013) Analysis of material removal rate and electrode wear in sinking EDM roughing strategies using different graphite grades. Procedia CIRP, 6: 163–167. doi:10.1016/j.procir.2013.03.079
  • Li, L.; Feng, L.; Bai, X.; Li, Z.Y. (2016b) Surface characteristics of Ti–6Al–4V alloy by EDM with Cu–SiC composite electrode. Applied Surface Science, 388: 546–550. doi:10.1016/j.apsusc.2015.10.145
  • Li, L.; Niu, Z.W.; Zheng, G.M. (2016a) Ultrasonic electrodeposition of Cu–SiC electrodes for EDM. Materials and Manufacturing Processes, 31(1): 37–41. doi:10.1080/10426914.2015.1025968
  • Mandal, P.; Mondal, S.C. (2018a) Investigation of electro-thermal property of Cu-MWCNT-coated 316L stainless steel. Surface Engineering, 34(9): 697–704. doi:10.1080/02670844.2017.1395981
  • Mandal, P.; Mondal, S.C. (2018b) Investigation of electro-thermal property for Cu-MWCNT composite coating on anodized 6061 aluminium alloy. Applied Surface Science, 454: 138–147. doi:10.1016/j.apsusc.2018.05.130
  • Mandal, P.; Mondal, S.C. (2019a) Investigation on the performance of Copper-Coated 6061 aluminium alloy electrode in electric discharge machining. In Research into Design for a Connected World, Springer, Singapore, 345–355.
  • Mandal, P.; Mondal, S.C. (2019b) Development and application of Cu-SWCNT nanocomposite–coated 6061Al electrode for EDM. The International Journal of Advanced Manufacturing Technology, 103(58): 3067–3076. doi:10.1007/s00170-019-03710-5
  • Mandal, P.; Mondal, S.C. (2019c) Surface characteristics of mild steel using EDM with Cu-MWCNT composite electrode. Materials and Manufacturing Processes, 34(12): 1326–1332. doi:10.1080/10426914.2019.1605179
  • Mandal, P.; Mondal, S.C. (2020) Enhancement of electro-thermal and mechanical properties for Cu-SWCNT coated 6061al. Surface Engineering, 36(2): 135–143. doi:10.1080/02670844.2019.1615260
  • Manu, R.; Priya, S. (2013) Implication of electrodeposition parameters on the architecture behavior of MWCNT–incorporated metal matrix. Applied Surface Science, 284: 270–277. doi:10.1016/j.apsusc.2013.07.093
  • Miyamoto, Y.; Berber, S.; Yoon, M.; Rubio, A.; Tománek, D. (2002) Onset of nanotube decay under extreme thermal and electronic excitations. Physica B: Condensed Matter, 323(14): 78–85. doi:10.1016/S0921-4526(02)00988-2
  • Ning, D.; Zhang, A.; Wu, H. (2019) Enhanced wear performance of Cu-carbon nanotubes composite coatings prepared by. Materials, 12(3): 392. doi:10.3390/ma12030392
  • Ramalingam, S.; Balakrishnan, K.; Shanmugasamy, S.; Subramania, A. (2017) Electrodeposition and characterisation of Cu–MWCNTs nanocomposite coatings. Surface Engineering, 33(5): 369–374. doi:10.1080/02670844.2016.1258164
  • Shabgard, M.; Khosrozadeh, B. (2017) Investigation of carbon nanotube added dielectric on the surface characteristics and machining performance of Ti–6Al–4V alloy in EDM process. Journal of Manufacturing Processes, 25: 212–219. doi:10.1016/j.jmapro.2016.11.016
  • Shanker, K.; Ghosh, A. (1975) A study of electro-spark machining characteristics with electromagnetic spark-gap controlling mechanism. International Journal of Machine Tool Design and Research, 15(4): 209–221. doi:10.1016/0020-7357(75)90012-8
  • Shunmugam, M.S.; Philip, P.K.; Gangadhar, A. (1994) Improvement of wear resistance by EDM with tungsten carbide P/M electrode. Wear, 171(12): 1–5. doi:10.1016/0043-1648(94)90340-9
  • Singh, A.; Ghosh, A. (1999) A thermo-electric model of material removal during electric discharge machining. International Journal of Machine Tools and Manufacture, 39(4): 669–682. doi:10.1016/S0890-6955(98)00047-9
  • Subramaniam, C.; Yamada, T.; Kobashi, K.; Sekiguchi, A.; Futaba, D.N.; Yumura, M.; Hata, K. (2013) One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nature Communications, 4: 2202. doi:10.1038/ncomms3202
  • Sun, Y. (2010) Mechanical Properties of Carbon Nanotube/metal Composites PhD Thesis, University of Central Florida.
  • Sun, Y.; Sun, J.; Liu, M.; Chen, Q. (2007) Mechanical strength of carbon nanotube–nickel nanocomposites. Nanotechnology, 18(50): 505704. doi:10.1088/0957-4484/18/50/505704
  • Suzuki, K.; Iwai, M.; Sharma, A.; Uematsu, T.; Shoda, K.; Kunieda, M. (2004) Electrical discharge machining using electrically conductive CVD diamond as an electrode. New Diamond and Frontier Carbon Technology, 14(1): 35–44. doi:10.4028/www.scientific.net/KEM.257-258.535
  • Suzuki, T.; Saito, H.; Kato, M.; Fujino, T.; Mitsui, T. (2008) Development of Cu-based C.N.T. composite electrodes for low wear property in electrical discharge machining. International Journal of Electrical Machining, 13: 41–44. doi:10.2526/ijem.13.41
  • Treacy, M.J.; Ebbesen, T.W.; Gibson, J.M. (1996) Exceptionally high young's modulus observed for individual carbon nanotubes. Nature, 381(6584): 678–680. doi:10.1038/381678a0
  • Wong, E.W.; Sheehan, P.E.; Lieber, C.M. (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 277(5334): 1971–1975. doi:10.1126/science.277.5334.1971
  • Yang, Y.L.; Wang, Y.D.; Ren, Y.; He, C.S.; Deng, J.N.; Nan, J.; Chen, J.G.; Zuo, L. (2008) Single-walled carbon nanotube-reinforced copper composite coatings prepared by electrodeposition under ultrasonic field. Materials Letters, 62(1): 47–50. doi:10.1016/j.matlet.2007.04.086
  • Zaw, H.M.; Fuh, J.Y.H.; Nee, A.Y.C.; Lu, L. (1999) Formation of a new EDM electrode material using sintering techniques. Journal of Materials Processing TechnologyTechnology, 89–90: 182–186. doi:10.1016/S0924-0136(99)00054-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.