267
Views
1
CrossRef citations to date
0
Altmetric
Articles

Enhancement of wear resistance for improved functional performance of Co-Cr-Mo hip implants through cryogenic surface treatment: a case study

, , &

References

  • Affatato, S.; Bersaglia, G.; Junqiang, Y.; Traina, F.; Toni, A.; Viceconti, M. (2006) The predictive power of surface profile parameters on the amount of wear measured in vitro on metal-on-polyethylene artificial hip joints. The New England Journal of Medicine 220: 457–464.
  • ASTM-F75 (2011) Standard Test Method for Wear Testing of Polymeric Materials Used in Total Joint Prostheses. ASTM International, West Conshohocken, PA.
  • Bahce, E.; Guler, M.S.; Emir, E. (2020) Investigation of surface quality of CoCrMo alloy used in the tibial component of the knee prosthesis according to the methods of turning and turning-grinding. Materials Science-Medziagotyra 26(1): 41–48.
  • Ben Fredj, N.; Sidhom, H. (2006) Effects of the cryogenic cooling on the fatigue strength of the AISI 304 stainless steel ground components. Cryogenics 46(6): 439–448. doi:10.1016/j.cryogenics.2006.01.015
  • Béreš, M.; Silva, C.C.; Sarvezuk, P.W.C.; Wu, L.; Antunes, L.H.M.; Jardini, A.L.; Feitosa, A.L.M.; Žilková, J.; de Abreu, H.F.G.; Filho, R.M. (2018) Mechanical and phase transformation behavior of biomedical Co-Cr-Mo alloy fabricated by direct metal laser sintering. Materials Science and Engineering: A 714: 36–42. doi:10.1016/j.msea.2017.12.087
  • Bijukumar, D.R.; Salunkhe, S.; Zheng, G.; Barba, M.; Hall, D.J.; Pourzal, R.; Mathew, M.T. (2020) Wear particles induce a new macrophage phenotype with the potential to accelerate material corrosion within total hip replacement interfaces. Acta Biomaterialia 101: 586–597. doi:10.1016/j.actbio.2019.10.039
  • Buckley, H. (1968) Adhesion, friction and wear of cobalt and cobalt-base alloys. Cobalt: 20.
  • Buscher, R.; Fischer, A. (2005) The pathways of dynamic recrystallization in all-metal hip joints. Wear 259(7-12): 887–897. doi:10.1016/j.wear.2005.02.036
  • Crook, P.; Li, C.C. (1983) The elevated temperature metal to metal wear behavior of selected hard-facing alloys. Wear Materials 272–279.
  • de Castro Girão, D.; Béreš, M.; Jardini, A.L.; Filho, R.M.; Silva, C.C.; de Siervo, A.; Gomes de Abreu, H.F.; Araújo, W.S. (2020) An assessment of biomedical CoCrMo alloy fabricated by direct metal laser sintering technique for implant applications. Materials Science and Engineering: C 107: 110305. doi:10.1016/j.msec.2019.110305
  • Esfahani, A.K.; Babaei, M.; Sarrami-Foroushani, S. (2021) A numerical model coupling phase transformation to predict microstructure evolution and residual stress during quenching of 1045 steel. Mathematics and Computers in Simulation 179: 1–22. doi:10.1016/j.matcom.2020.07.016
  • Germain, M.A.; Hatton, A.; Williams, S.; Matthews, J.B.; Stone, M.H.; Fisher, J.; Ingham, E. (2003) Comparison of the cytotoxicity of clinically relevant cobalt-chromium and alumina ceramic wear particles in vitro. Biomaterials 24(3): 469–479. doi:10.1016/S0142-9612(02)00360-5
  • Greenwald, A.S.; Garino, J.P.; Comm, C. (2001) Alternative bearing surfaces: The good, the bad, and the ugly. Journal of Bone and Joint Surgery-American Volume 83A: 68.
  • Hagihara, K.; Nakano, T.; Sasaki, K. (2016) Anomalous strengthening behavior of Co–Cr–Mo alloy single crystals for biomedical applications. Scripta Materialia 123: 149–153. doi:10.1016/j.scriptamat.2016.06.016
  • Heisel, C.; Silva, M.; Schmalzried, T.P. (2003) Bearing surface options for total hip replacement in young patients. Journal of Bone and Joint Surgery-American Volume 85A: 1366.
  • Iglesias, P.; Bermudez, M.D.; Moscoso, W.; Rao, B.C.; Shankar, M.R.; Chandrasekar, S. (2007) Friction and Wear of nanostructured metals created by large strain extrusion machining. Wear 263(1-6): 636–642. doi:10.1016/j.wear.2006.11.040
  • Ingham, E.; Fisher, J. (2000) Biological reactions to wear debris in total joint replacement. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine 214(1): 21–37. doi:10.1243/0954411001535219
  • Jawahir, I.S.; Puleo, D.A.; Schoop, J. (2016) Cryogenic machining of biomedical implant materials for improved functional performance, life and sustainability. Procedia CIRP 46: 7–14. doi:10.1016/j.procir.2016.04.133
  • Jayal, A.D.; Umbrello, D.; Dillon, O.W.; Jr.; Jawahir, I.S. (2010) An investigation of the effects of cutting conditions, tool edge geometry and workpiece hardness on surface integrity in orthogonal machining of AISI 52100 steel. Transactions of NAMRI/SME 38: 57.
  • Khaimanee, P.; Choungthong, P.; Uthaisangsuk, V. (2017) Effects of isothermal aging on microstructure evolution, hardness and wear properties of wrought Co-Cr-Mo alloy. Journal of Materials Engineering and Performance 26(3): 955–968. doi:10.1007/s11665-017-2525-x
  • Li, W.L.; Tao, N.R.; Lu, K. (2008) Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scripta Materialia 59(5): 546–549. doi:10.1016/j.scriptamat.2008.05.003
  • Matsumoto, H.; Koizumi, Y.; Ohashi, T.; Lee, B.S.; Li, Y.; Chiba, A. (2014) Microscopic mechanism of plastic deformation in a polycrystalline Co-Cr-Mo alloy with a single Hcp phase. Acta Materialia 64: 1–11. doi:10.1016/j.actamat.2013.11.005
  • Noyan, I.C.; Cohen, J.B. (1987) Residual Stress: Measurement by Diffraction and Interpretation. Springer, New York, NY.
  • Pezzotti, G.; Takahashi, Y.; Zhu, W.; Sugano, N. (2012) In-depth profiling of elastic residual stress and the in vivo wear mechanism of self-mating alumina hip joints. Wear 284–285: 91–97. doi:10.1016/j.wear.2012.02.007
  • Saldívar-García, A.J.; López, H.F. (2005) Microstructural effects on the wear resistance of wrought and as-Cast Co-Cr-Mo-C implant alloys. Journal of Biomedical Materials Research: Part A 74(2): 269–274. doi:10.1002/jbm.a.30392
  • Salinas-Rodrfguez, A. (1999) The role of the FCC-HCP phase transformation during the plastic deformation of Co-Cr-Mo-C alloys for biomedical applications. In Cobalt-Base Alloys for Biomedical Applications, J.A. Disegi R. Kennedy, and R.R. Piiliar. Amsterdam: ASTM International-STP Series, 1365.
  • Shi, Y.N.; Han, Z. (2008) Tribological behaviors of nanostructured surface layer processed by means of surface mechanical attrition treatment. Key Engineering Materials 384: 321–334. doi:10.4028/www.scientific.net/KEM.384.321
  • Silva, M.; Heisel, C.; Schmalzried, T.P. (2005) Metal-on-metal total hip replacement. Clinical Orthopaedics & Related Research 430: 53–61. doi:10.1097/01.blo.0000149995.84350.d7
  • Stott, F.H.; Stevenson, C.W.; Wood, G.C. (1977) Friction and wear properties of stellite 31 at temperatures from 293 to 1073 K. Metals Technology 4(1): 66–74. doi:10.1179/030716977803292169
  • Tang, J.; Luo, H.Y.; Zhang, Y.B. (2017) Enhancing the surface integrity and corrosion resistance of Ti-6Al-4V titanium alloy through cryogenic burnishing. The International Journal of Advanced Manufacturing Technology 88(9–12): 2785–2793. doi:10.1007/s00170-016-9000-y
  • Turger, A.; Köhler, J.; Denkena, B.; Correa, T.; Becher, C.; Hurschler, C. (2013) Manufacturing conditioned roughness and wear of biomedical oxide ceramics for all-ceramic knee implants. Biomedical Engineering Online 12: 84. doi:10.1186/1475-925X-12-84
  • Wang, Z.W.; Yan, Y.; Qiao, L.J. (2020) Effect of deformed subsurface on the corrosion resistance of biomedical CoCrMo alloy in simulated physiological solution. Journal of Materials Science 55(27): 13351–13362. doi:10.1007/s10853-020-04920-z
  • Wang, Z.W.; Yan, Y.; Wang, Y.; Su, Y.J.; Qiao, L.J. (2020) Lifecycle of cobalt-based alloy for artificial joints: From bulk material to nanoparticles and ions due to bio-tribocorrosion. Journal of Materials Science & Technology 46: 98–106. doi:10.1016/j.jmst.2019.12.010
  • Wilson, G.S.; Grandt, A.F.; Bucci, R.J.; Schultz, R.W. (2009) Exploiting bulk residual stresses to improve fatigue crack growth performance of structures. International Journal of Fatigue 31(8-9): 1286–1299. doi:10.1016/j.ijfatigue.2009.02.023
  • Wu, X.; Tao, N.; Hong, Y.; Liu, G.; Xu, B.; Lu, J.; Lu, K. (2005) Strain-induced grain refinement of cobalt during surface mechanical attrition treatment. Acta Materialia 53(3): 681–691. doi:10.1016/j.actamat.2004.10.021
  • Yamanaka, K.; Mori, M.; Kurosu, S.; Matsumoto, H.; Chiba, A. (2009) Ultrafine grain refinement of biomedical Co-29Cr-6Mo alloy during conventional hot-compression deformation. Metallurgical and Materials Transactions A 40(8)A: 1980–1994. doi:10.1007/s11661-009-9879-0
  • Yang, S.; Dillon, O.W.; Jr.; Puleo, D.A.; Jawahir, I.S. (2013) Effect of cryogenic burnishing on surface integrity modifications of Co-Cr-Mo biomedical alloy. Journal of Biomedical Materials Research Part B: Applied Biomaterials 101(1): 139–152. doi:10.1002/jbm.b.32827
  • Yang, S.; Umbrello, D.; Dillon, O.W.; Jr.; Puleo, D.A.; Jawahir, I.S. (2015) Cryogenic cooling effect on surface and subsurface microstructural modifications in burnishing of Co-Cr-Mo biomaterial. Journal of Materials Processing Technology217: 211–221. doi:10.1016/j.jmatprotec.2014.11.004
  • Yang, Y.; Yang, S.J.; Wang, H.M. (2021) Effects of the phase content on dynamic damage evolution in Fe50Mn30Co10Cr10 high entropy alloy. Journal of Alloys and Compounds 851: 156883. doi:10.1016/j.jallcom.2020.156883
  • Zhao, C.C.; Zhou, J.; Mei, Q.S.; Ren, F.Z. (2019) Microstructure and dry sliding wear behavior of ultrafine-grained Co-30 at% Cr alloy at room and elevated temperatures. Journal of Alloys and Compounds 770: 276–284. doi:10.1016/j.jallcom.2018.08.092
  • Zhu, K.Y.; Vassel, A.; Brisset, F.; Lu, K.; Lu, J. (2004) Nanostructure formation mechanism of alpha-titanium using SMAT. Acta Materialia 52(14): 4101–4110. doi:10.1016/j.actamat.2004.05.023
  • Zurecki, Z.; Ghosh, R.; Frey, J.H. (2003) Investigation of white layers formed in conventional and cryogenic hard turning of steels. Proceedings of IMECE’03. Washington, DC. doi:10.1115/IMECE2003-42313

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.