165
Views
0
CrossRef citations to date
0
Altmetric
Articles

Machining and characterization of holes machined on a biomaterial Ti-6Al-4V ELI using an indigenously developed electrochemical machining cell with IEG control mechanism

& ORCID Icon

References

  • Anasane, S.S.; Bhattacharyya, B. (2016) Experimental investigation on suitability of electrolytes for electrochemical micromachining of titanium. The International Journal of Advanced Manufacturing Technology, 86(5-8): 2147–2160. doi:10.1007/s00170-015-8309-2
  • Auxien (2021) http://www.auxein.com/wp-content/uploads/2016/06/1.0mm.pdf. Accessed 28 June 2021.
  • Bharatish, A.; Murthy, H.N.N.; Anand, B.; Madhusoodana, C.D.; Praveena, G.S.; Krishna, M. (2013) Characterization of hole circularity and heat affected zone in pulsed CO2 laser drilling of alumina ceramics. Optics & Laser Technology, 53: 22–32. doi:10.1016/j.optlastec.2013.04.010
  • Bhattacharyya, B. (2015) Electrochemical Micromachining for Nanofabrication, Mems and Nanotechnology. William Andrew Publishing, USA. doi:10.1016/C2014-0-00027-5
  • Bhattacharyya, B.; Malapati, M.; Munda, J. (2005) Experimental study on electrochemical micromachining. Journal of Materials Processing Technology, 169(3): 485–492. doi:10.1016/j.jmatprotec.2005.04.074
  • Bilgi, D.S.; Jain, V.K.; Shekhar, R.; Kulkarni, A.V. (2007) Hole quality and interelectrode gap dynamics during pulse current electrochemical deep hole drilling. The International Journal of Advanced Manufacturing Technology, 34(1-2): 79–95. doi:10.1007/s00170-006-0572-9
  • Clifton, D.; Mount, A.R.; Alder, G.M.; Jardine, D. (2002) Ultrasonic measurement of the inter-electrode gap in electrochemical machining. International Journal of Machine Tools and Manufacture, 42(11): 1259–1267. doi:10.1016/S0890-6955(02)00041-X
  • De Silva, A.K.M.; Altena, H.S.J.; McGeough, J.A. (2003) Influence of electrolyte concentration on copying accuracy of precision-ECM. CIRP Annals, 52(1): 165–168. doi:10.1016/S0007-8506(07)60556-3
  • Ghoshal, B.; Bhattacharyya, B. (2015) Generation of micro-features on stainless steel by electrochemical micromachining. The International Journal of Advanced Manufacturing Technology, 76(1-4): 39–50. doi:10.1007/s00170-013-5251-z
  • Jain, V.K.; Lal, G.K.; Kanetkar, Y. (2005) Stray current attack and stagnation zones in electrochemical drilling. The International Journal of Advanced Manufacturing Technology, 26(5-6): 527–536. doi:10.1007/s00170-004-2264-7
  • Joshi, S.S.; Marla, D. (2014) Electrochemical micromachining. Reference Module in Materials Science and Materials Engineering, 11: 373–403. doi:10.1016/B978-0-08-096532-1.01108-0
  • Kang, M.; Li, H.; Fu, X. (2011) Measurement of electrochemical machining initial gap based on machine vision. Advanced Materials Research, 230-232: 1190–1194. doi:10.4028/www.scientific.net/AMR.230-232.1190
  • Kapadnis, S.D.; Anasane, S.S. (2019) Experimental investigation of electrochemical micromachining process parameters on Ti-6Al-4V. Proc. International Conference on Precision, Meso, Micro and Nano Engineering (COPEN), IIT Indore, 2019.
  • Kumar, S.S.; Hiremath, S.S. (2019) Effect of surface roughness and surface topography on wettability of machined biomaterials using flexible viscoelastic polymer abrasive media. Surface Topography: Metrology and Properties, 7(1): 015004. doi:10.1088/2051-672X/aaf6f6
  • Lu, Y.; Liu, K.; Zhao, D. (2011) Experimental investigation on monitoring interelectrode gap of ECM with six-axis force sensor. The International Journal of Advanced Manufacturing Technology, 55(5-8): 565–572. doi:10.1007/s00170-010-3105-5
  • Lyubimov, V.V.; Volgin, V.M.; Venevtsev, A.Y.; Gnidina, I.V. (2016) Micro electrochemical machining at the ultrasmall interelectrode gaps with the use of the packets of nanosecond voltage pulses. Procedia CIRP, 42(ISEM XVIII): 831–836. doi:10.1016/j.procir.2016.03.003
  • Mishra, K.; Gupta, S.; Bhattacharyya, B. (2020) Problematic areas in micro-electrochemical milling of HSTR alloys. The International Journal of Advanced Manufacturing Technology, 111(3-4): 1015–1036. doi:10.1007/s00170-020-06109-9
  • Mithu, M.A.H.; Fantoni, G.; Ciampi, J.; Santochi, M. (2012) On how tool geometry, applied frequency and machining parameters influence electrochemical microdrilling. CIRP Journal of Manufacturing Science and Technology, 5(3): 202–213. doi:10.1016/j.cirpj.2012.07.006
  • Ozerkan, H.B.; Cogun, C. (2013) Development and experimental investigation of electrochemical drilling method using rotary tube tool. Journal of the Faculty of Engineering and Architecture of Gazi University, 28(4): 885–895.
  • Ozerkan, H.B.; Cogun, C. (2020) Electrochemical small diameter deep hole drilling of powder metal steel. Transactions of FAMENA, 44(4): 47–58. doi:10.21278/TOF.444007919
  • Panigrahi, D.; Rout, S.; Patel, S.K.; Dhupal, D. (2021) Stray current and its consequences on microstructure of Hastelloy C-276 during parametric investigation on geometrical features: fabricated by electrochemical micromachining. The International Journal of Advanced Manufacturing Technology, 112(1-2): 133–156. doi:10.1007/s00170-020-06365-9
  • Park, B.J.; Kim, B.H.; Chu, C.N. (2006) The effects of tool electrode size on characteristics of micro electrochemical machining. CIRP Annals, 55(1): 197–200. doi:10.1016/S0007-8506(07)60397-7
  • Rajurkar, K.P.; Zhu, D.; McGeough, J.A.; Kozak, J.; De Silva, A. (1999) New developments in electro-chemical machining. CIRP Annals, 48(2): 567–579. doi:10.1016/S0007-8506(07)63235-1
  • Saxena, K.K.; Qian, J.; Reynaerts, D. (2018) A review on process capabilities of electrochemical micromachining and its hybrid variants. International Journal of Machine Tools and Manufacture, 127(January): 28–56. doi:10.1016/j.ijmachtools.2018.01.004
  • Seebach, M.; Fritz, C.; Kerschreiter, J.; Zaeh, M.F. (2021) Shape accuracy and surface quality of additively manufactured, optimized, patient-specific bone plates. Journal of Medical Devices, 15(2): 1–7. doi:10.1115/1.4049193
  • Singh, H.; Sharma, V.S.; Dogra, M. (2020) Exploration of graphene assisted vegetables oil based minimum quantity lubrication for surface grinding of TI-6AL-4V-ELI. Tribology International, 144(December 2019): 106113. doi:10.1016/j.triboint.2019.106113
  • Spieser, A.; Ivanov, A. (2015) Design of an electrochemical micromachining machine. The International Journal of Advanced Manufacturing Technology, 78(5-8): 737–752. doi:10.1007/s00170-014-6332-3
  • Tak, M.; Reddy, V.S.; Mishra, A.; Mote, R.G. (2018) Investigation of pulsed electrochemical micro-drilling on titanium alloy in the presence of complexing agent in electrolyte. Journal of Micromanufacturing, 1(2): 142–153. doi:10.1177/2516598418784682
  • Thangamani, G.; Thangaraj, M.; Moiduddin, K.; Mian, S.H.; Alkhalefah, H.; Umer, U. (2021) Performance analysis of electrochemical micro machining of titanium (TI-6AL-4V) alloy under different electrolytes concentrations. Metals, 11(2): 247–212. doi:10.3390/met11020247
  • Tomy, A.; Hiremath, S.S. (2020) Machining and characterization of multidirectional hybrid silica glass fiber reinforced composite laminates using abrasive jet machining. Silicon, 13(4): 1151–1164. doi:10.1007/s12633-020-00504-3
  • Wang, J.; Chen, W.; Gao, F.; Han, F. (2014) A new electrode sidewall insulation method in electrochemical drilling. The International Journal of Advanced Manufacturing Technology, 75(1-4): 21–32. doi:10.1007/s00170-014-6131-x
  • Yong, L.; Yunfei, Z.; Guang, Y.; Liangqiang, P. (2003) Localized electrochemical micromachining with gap control. Sensors and Actuators A, 108(1-3): 144–148. doi:10.1016/S0924-4247(03)00371-6
  • Zhang, Z.; Wang, Y.; Chen, F.; Mao, W. (2011) A micro-machining system based on electrochemical dissolution of material. Russian Journal of Electrochemistry, 47(7): 819–824. doi:10.1134/S1023193511070172
  • Zhao, W.; Li, X.; Wang, Z. (2006) Study on micro electrochemical machining at micro to meso-scale. Proceedings. 1st IEEE International Conference on Nano Micro Engineered and Molecular Systems, Zhuhai, China, January 2006, 325–329. doi:10.1109/NEMS.2006.334733

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.