193
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A review on performance evaluation of liquid nitrogen as coolant in turning Ti-6Al-4V alloy

ORCID Icon

References

  • Agrawal, C.; Khanna, N.; Pruncu, C.I.; Singla, A.K.; Gupta, M.K. (2020) Tool wear progression and its effects on energy consumption and surface roughness in cryogenic assisted turning of Ti-6Al-4V. The International Journal of Advanced Manufacturing Technology, 111(5–6): 1319–1331. doi:10.1007/s00170-020-06140-w
  • Agrawal, C.; Wadhwa, J.; Pitroda, A.; Pruncu, C.I.; Sarikaya, M.; Khanna, N. (2021) Comprehensive analysis of tool wear, tool life, surface roughness, costing and carbon emissions in turning Ti–6Al–4V titanium alloy: Cryogenic versus wet machining. Tribology International, 153: 106597. 10.1016/j.triboint.2020.106597
  • Al-Ghamdi, K.A.; Asif Iqbal, A.; Hussain, G. (2014) Machinability comparison of AISI 4340 and Ti-6Al-4V under cryogenic and hybrid cooling environments: A knowledge engineering approach. Proceedings of the Institution of Mechanical Engineering, Part B: Journal of Engineering Manufacture, 229(12): 2144–2164.
  • Aramcharoen, A. (2016) Influence of cryogenic cooling on tool wear and chip formation in turning of titanium alloy. Procedia CIRP, 46: 83–86. doi:10.1016/j.procir.2016.03.184
  • Anand, N.; Sravan Kumar, A.; Paul, S. (2019) Effect of cutting fluids applied in MQCL mode on machinability of Ti-6Al-4V. Journal of Manufacturing Processes, 43: 154–163. doi:10.1016/j.jmapro.2019.05.029
  • Anshab, K.; Arnaud, D.; Antoine, M.; Rene, L. (2020) Investigation on residual stresses in milling of Ti-6Al-4V for both rake and flank application of different MWF strategies. Procedia CIRP, 87: 131–136.
  • Arrazola, P.J.; Garay, A.; Iriarte, L.M.; Armendia, M.; Marya, S.; Le Maître, F. (2009) Machinability of titanium alloys (Ti6Al4Vand Ti555.3). Journal of Materials Processing Technology, 209(5): 2223–2230. doi:10.1016/j.jmatprotec.2008.06.020
  • Aslantas, K.; Danish, M.; Hasçelik, A.; Mia, M.; Gupta, M.K.; Ginta, T.; Ijaz, H. (2020) Investigations on surface roughness and tool wear characteristics in micro-turning of Ti-6Al-4V alloy. Materials, 13(13): 2998–2920. doi:10.3390/ma13132998
  • Ayed, Y.; Germain, G.; Pubill Melsio, A.; Kowalewski, P.; Locufier, D. (2017) Impact of supply conditions of liquid nitrogen on tool wear and surface integrity when machining the Ti-6Al-4V titanium alloy. The International Journal of Advanced Manufacturing Technology, 93(1–4): 1199–1206. doi:10.1007/s00170-017-0604-7
  • Bermingham, M.J.; Kirsch, J.; Sun, S.; Palanisamy, S.; Dargusch, M.S. (2011) New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 51(6): 500–511. doi:10.1016/j.ijmachtools.2011.02.009
  • Bermingham, M.J.; Palanisamy, S.; Kent, D.; Dargusch, M.S. (2012) A comparison of cryogenic and high pressure emulsion cooling technologies on tool life and chip morphology in Ti–6Al–4V cutting. Journal of Materials Processing Technology, 212(4): 752–765. doi:10.1016/j.jmatprotec.2011.10.027
  • Bordin, A.; Bruschi, S.; Ghiotti, A.; Bariani, P.F. (2015a) Analysis of tool wear in cryogenic machining of additive manufactured Ti-6Al-4V alloy. Wear, 328–329: 89–99. doi:10.1016/j.wear.2015.01.030
  • Bordin, A.; Imbrogno, S.; Rotella, G.; Bruschi, S.; Ghiotti, A.; Umbrello, D. (2015b) Finite element simulation of semi-finishing turning of electron beam melted Ti6Al4V under dry and cryogenic cooling. Procedia CIRP, 31: 551–556. doi:10.1016/j.procir.2015.03.040
  • Bordin, A.; Medeossi, F.; Ghiotti, A.; Bruschi, S.; Savio, E.; Facchini, L.; Bucciotti, F. (2016) Feasibility of cryogenic cooling in finishing turning of acetabular cups made of additive manufactured Ti-6Al-4V. Procedia CIRP, 46: 615–618. doi:10.1016/j.procir.2016.04.029
  • Boyer, R.R. (1996) An overview on the use of titanium in the aerospace industry. Materials Science and Engineering A, 213(1–2): 103–114. doi:10.1016/0921-5093(96)10233-1
  • Bruschi, S.; Bertolini, R.; Bordin, A.; Medea, F.; Ghiotti, A. (2016) Influence of the machining parameters and cooling strategies on the wear behavior of wrought and additive manufactured ti-6Al-4V for biomedical applications. Tribology International, 102: 133–142. doi:10.1016/j.triboint.2016.05.036
  • Bruschi, S.; Bertolini, R.; Medeossi, F.; Ghiotti, A.; Savio, E.; Shivpuri, R. (2018) Case study: The application of machining-conditioning to improve the wear resistance of Ti-6Al-4V surfaces for human hip implants. Wear, 394–395: 134–142. doi:10.1016/j.wear.2017.10.013
  • Cantero, J.L.; Tardıo, M.M.; Canteli, J.A.; Marcos, M.; Miguelez, M.H. (2005) Dry drilling of alloy Ti–6Al–4V. International Journal of Machine Tools and Manufacture, 45(11): 1246–1255. doi:10.1016/j.ijmachtools.2005.01.010
  • Caudill, J.; Schoop, J.; Jawahir, I.S. (2019) Numerical modeling of cutting forces and temperature distribution in high speed cryogenic and flood-cooled milling of Ti-6Al-4V. Procedia CIRP, 82: 83–88. doi:10.1016/j.procir.2019.04.055
  • Caudill, J.; Huang, B.; Arvin, C.; Schoop, J.; Meyer, K.; Jawahir, I.S. (2014) Enhancing the surface integrity of Ti-6Al-4V alloy through cryogenic burnishing. Procedia CIRP, 13: 243–248. doi:10.1016/j.procir.2014.04.042
  • Charalie, S.; Roland, B.; Prakash, M. (2019) A better understanding of cryogenic machining using CFD and FEM simulation. Procedia CIRP, 81: 1071–1076.
  • Che-Haron, C.H.; Jawaid, A. (2005) The effect of machining on surface integrity of titanium alloy Ti–6Al–4V. Journal of Materials Processing Technology, 166(2): 188–192. doi:10.1016/j.jmatprotec.2004.08.012
  • Chen, G.; Chen, C.; Caudill, J.; Jawahir, I.S. (2019) Effect of cutting-edge radius and cooling strategies on surface integrity in orthogonal machining of Ti-6Al-4V alloy. Procedia CIRP, 82: 148–153. doi:10.1016/j.procir.2019.04.056
  • Damir, A.; Sadek, A.; Attia, H. (2018) Characterization of machinability and environmental impact of cryogenic turning of Ti-6Al-4V. Procedia CIRP, 69: 893–898. doi:10.1016/j.procir.2017.11.070
  • Damir, A.; Shi, B.; Helmi Attia, M. (2019) Flow characteristics of optimized hybrid cryogenic-minimum quantity lubrication cooling in machining of aerospace materials. CIRP Annals, 68(1): 77–80. doi:10.1016/j.cirp.2019.04.047
  • Dandekar, C.R.; Shin, Y.C.; Barnes, J. (2010) Machinability improvement of titanium alloy (Ti–6Al–4V) via LAM and hybrid machining. International Journal of Machine Tools and Manufacture, 50(2): 174–182. doi:10.1016/j.ijmachtools.2009.10.013
  • Davoudinejad, A.; Chiappini, E.; Tirelli, S.; Annoni, M.; Strano, M. (2015) Finite element simulation and validation of chip formation and cutting forces in dry and cryogenic cutting of Ti-6Al-4V. Procedia Manufacturing, 1: 728–739. doi:10.1016/j.promfg.2015.09.037
  • Deiab, I.; Raza, S.W.; Pervaiz, S. (2014) Analysis of lubrication strategies for sustainable machining during turning of titanium Ti-6Al-4V alloy. Procedia CIRP, 17: 766–771. doi:10.1016/j.procir.2014.01.112
  • Deshpande, Y.V.; Andhare, A.B.; Padole, P.M. (2018) How cryogenic techniques help in machining of nickel alloys? A review. Machining Science and Technology, 22(4): 543–584. doi:10.1080/10910344.2017.1382512
  • Dhananchezian, M.; Pradeep Kumar, M. (2011) Cryogenic turning of the Ti-6Al-4V alloy with modified cutting tool inserts. Cryogenics, 51(1): 34–40. doi:10.1016/j.cryogenics.2010.10.011
  • Ezugwu, E.O.; Wang, Z.M. (1997) Titanium alloys and their machinability—A review. Journal of Materials Processing Technology, 68(3): 262–274. doi:10.1016/S0924-0136(96)00030-1
  • Ezugwu, E.; Bonney, J.; Yamane, Y. (2003) An overview of the machinability of aeroengine alloys. Journal of Materials Processing Technology, 134(2): 233–253. doi:10.1016/S0924-0136(02)01042-7
  • Ezugwu, E.O.; Bonney, J.; Da Silva, R.B.; Çakir, O. (2007) Surface integrity of finished turned Ti-6Al-4V alloy with PCD tools using conventional and high-pressure coolant supplies. International Journal of Machine Tools and Manufacture, 47(6): 884–891. doi:10.1016/j.ijmachtools.2006.08.005
  • Ginting, A.; Nouari, M. (2006) Experimental and numerical studies on the performance of alloyed carbide tool in dry milling of aerospace material. International Journal of Machine Tools and Manufacture, 46(7–8): 758–768. doi:10.1016/j.ijmachtools.2005.07.035
  • Gupta, M.K.; Song, Q.; Liu, Z.; Sarikaya, M.; Jamil, M.; Mia, M.; Kushvaha, V.; Singla, A.K.; Li, Z. (2020) Ecological, economical and technological perspectives-based sustainability assessment in hybrid-cooling assisted machining of Ti-6Al-4V Alloy. Sustainable Materials and Technologies, 26: e00218. doi:10.1016/j.susmat.2020.e00218
  • Gupta, M.K.; Song, Q.; Liu, Z.; Sarikaya, M.; Jamil, M.; Mia, M.; Khanna, N.; Krolczyk, G.M. (2021) Experimental characterization of the performance of hybrid cryo-lubrication assisted turning of Ti–6Al–4V alloy. Tribology International, 153: 106582. doi:10.1016/j.triboint.2020.106582
  • Hanenkamp, N.; Amon, S.; Gross, D. (2018) Hybrid supply system for conventional and CO2/MQL based cryogenic cooling. Procedia CIRP, 77: 219–222. doi:10.1016/j.procir.2018.08.293
  • Hardt, M.; Klocke, F.; Döbbeler, B.; Binder, M.; Jawahir, I.S. (2018) Experimental study on surface integrity of cryogenically machined Ti-6Al-4V alloy for biomedical devices. Procedia CIRP, 71: 181–186. doi:10.1016/j.procir.2018.05.094
  • Hassan, A.; Yao, Z.Q. (2004) Minimum lubrication milling of titanium alloys. Materials Science Forum, 471–472: 87–91. doi:10.4028/www.scientific.net/MSF.471-472.87
  • Hong, H.; Riga, A.; Gahoon, J.; Scott, C. (1993) Machinability of steels and titanium alloys under lubrication. Wear, 162–164: 34–39. doi:10.1016/0043-1648(93)90481-Z
  • Hong, S.Y.; Ding, Y. (2001) Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 41(10): 1417–1437. doi:10.1016/S0890-6955(01)00026-8
  • Hong, S.Y.; Ding, Y.; Woo-Cheol, J. (2001a) Friction and cutting forces in cryogenic machining of Ti–6Al–4V. International Journal of Machine Tools and Manufacture, 41(15): 2271–2285. doi:10.1016/S0890-6955(01)00029-3
  • Hong, S.Y.; Irel, M.; Woo-Cheol, J. (2001b) New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 41(15): 2245–2260. doi:10.1016/S0890-6955(01)00041-4
  • Huang, P.; Li, H.C.; Zhu, W.L.; Wang, H.; Zhang, G.; Wu, X.; To, S.; Zhu, Z. (2020) Effects of eco-friendly cooling strategy on machining performance in micro-scale diamond turning of Ti–6Al–4V. Journal of Cleaner Production, 243: 118526. doi:10.1016/j.jclepro.2019.118526
  • Ibrahim Sadik, M.; Isakson, S.; Malakizadi, A.; Nyborg, L. (2016) Influence of coolant flow rate on tool life and wear development in cryogenic and wet milling of Ti-6Al-4V. Procedia CIRP, 46: 91–94. doi:10.1016/j.procir.2016.02.014
  • Imbrogno, S.; Sartori, S.; Bordin, A.; Bruschi, S.; Umbrello, D. (2017) Machining simulation of Ti-6Al-4V under dry and cryogenic conditions. Procedia CIRP, 58: 475–480. doi:10.1016/j.procir.2017.03.263
  • Iqbal, A.; Biermann, D.; Abbas, H.; Al-Ghamdi, K.A.; Metzger, M. (2018) Machining β-titanium alloy under carbon dioxide snow and micro lubrication: A study on tool deflection, energy consumption, and tool damage. The International Journal of Advanced Manufacturing Technology, 97(9–12): 4195–4208. doi:10.1007/s00170-018-2267-4
  • Iqbal, A.; Zhao, W.; Zaini, J.; He, N.; Nauman, M.M.; Suhaimi, H. (2019) Comparative analyses of multi-pass face-turning of a titanium alloy under various cryogenic cooling and micro-lubrication conditions. International Journal of Lightweight Materials and Manufacture, 2(4): 388–396. doi:10.1016/j.ijlmm.2018.12.004
  • Isakson, S.; Sadik, M.I.; Malakizadi, A.; Krajnik, P. (2018) Effect of cryogenic cooling and tool wear on surface integrity of turned Ti-6Al-4V. Procedia CIRP, 71: 254–259. doi:10.1016/j.procir.2018.05.061
  • Jaffery, S.I.; Mativenga, P.T. (2009) Assessment of the machinability of Ti-6Al-4V alloy using the wear map approach. The International Journal of Advanced Manufacturing Technology, 40(7–8): 687–696. doi:10.1007/s00170-008-1393-9
  • Jamil, M.; Khan, A.M.; Hega, H.; Gong, L.; Mia, M.; Gupta, M.K.; He, N. (2019a) Effects of hybrid Al2O3-CNT nanofluids and cryogenic cooling on machining of Ti–6Al–4V. The International Journal of Advanced Manufacturing Technology, 102(9–12): 3895–3909. doi:10.1007/s00170-019-03485-9
  • Jamil, M.; Khan, A.M.; Gupta, M.K.; Mia, M.; He, N.; Li, L.; VinothKumar, S. (2020) Influence of CO2-snow and subzero MQL on thermal aspects in the machining of Ti-6Al-4V. Applied Thermal Engineering, 177: 115480–115416. doi:10.1016/j.applthermaleng.2020.115480
  • Jamil, M.; Khan, A.M.; He, N.; Li, L.; Iqbal, A.; Mia, M. (2019b) Evaluation of machinability and economic performance in cryogenic-assisted hard turning of α-β titanium: A step towards sustainable manufacturing. Machining Science and Technology, 23(6): 1022–1046. doi:10.1080/10910344.2019.1652312
  • Jawahir, I.S.; Attia, H.; Biermann, D.; Duflou, J.; Klocke, F.; Meyer, D.; Newman, S.T.; Pusavec, F.; Putz, M.; Rech, J.; Schulze, V.; Umbrello, D. (2016) Cryogenic manufacturing processes. CIRP Annals, 65(2): 713–736. doi:10.1016/j.cirp.2016.06.007
  • Jawahir, I.S.; Brinksmeier, E.; Saoubi, M.R.; Aspinwall, D.; Outeiro, J.; Meyer, D.; Umbrello, D.; Jayal, A. (2011) Surface integrity in material removal processes: Recent advances. CIRP Annals, 60(2): 603–626. doi:10.1016/j.cirp.2011.05.002
  • Kaynak, Y.; Karaca, H.E.; Noebe, R.D.; Jawahir, I.S. (2013) Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: A comparison of tool-wear performance with dry and MQL machining. Wear, 306(1–2): 51–63. doi:10.1016/j.wear.2013.05.011
  • Kaynak, Y.; Lu, T.; Jawahir, I.S. (2014) Cryogenic machining-induced surface integrity: A review and comparison with dry, MQL, and flood-cooled machining. Machining Science and Technology, 18(2): 149–198. doi:10.1080/10910344.2014.897836
  • Khan, M.A.; Mia, M.; Dhar, N.R. (2017) High-pressure coolant on flank and rake surfaces of tool in turning of Ti-6Al-4V: Investigations on forces, temperature, and chips. The International Journal of Advanced Manufacturing Technology, 90(5–8): 1977–1991. doi:10.1007/s00170-016-9511-6
  • Khan, M.A.; Imran Jaffery, S.H.; Khan, M.; Younas, M.; Butt, S.I.; Ahmad, R.; Warsi, S.S. (2019) Statistical analysis of energy consumption, tool wear and surface roughness in machining of titanium alloy (Ti-6Al-4V) under dry, wet and cryogenic conditions. Mechanical Sciences, 10(2): 561–573. doi:10.5194/ms-10-561-2019
  • Khan, M.A.; Imran Jaffery, S.H.; Khan, M.; Younas, M.; Butt, S.I.; Ahmad, R.; Warsi, S.S. (2020a) Multi-objective optimization of turning titanium-based alloy Ti-6Al-4V under dry, wet, and cryogenic conditions using gray relational analysis (GRA). The International Journal of Advanced Manufacturing Technology, 106(9–10): 3897–3911. doi:10.1007/s00170-019-04913-6
  • Khan, A.M.; He, N.; Li, L.; Zhao, W.; Jamil, M. (2020b) Analysis of productivity and machining efficiency in sustainable machining of titanium alloy. Procedia Manufacturing, 43: 111–118. doi:10.1016/j.promfg.2020.02.122
  • Khann, N.; Agrawal, C.; Shah, P.; Larsen, J.Ø.; Phadnis, V.A. (2019) Eco-friendly machining using retrofitted cryogenic machining system. Materials Today: Proceedings, 18: 2806–2813. doi:10.1016/j.matpr.2019.07.147
  • Khatri, A.; Jahan, M.P. (2018) Investigating the tool wear mechanisms in machining of Ti-6Al-4V in flood coolant, dry and MQL conditions. Procedia Manufacturing, 26: 434–445. doi:10.1016/j.promfg.2018.07.051
  • Khaliq, W.; Zhang, C.; Jamil, M.; Khan, A.M. (2020) Tool wear, surface quality, and residual stresses analysis of micro-machined additive manufactured Ti–6Al–4V under dry and MQL conditions. Tribology International, 151: 106408–106415. doi:10.1016/j.triboint.2020.106408
  • Lakshmanan, S.; Pradeep Kumar, M.; Dhananchezian, M.; Yuvaraj, N. (2019) Investigation of AlCrN-coated inserts on cryogenic turning of Ti-6Al-4V alloy. Metals, 9: 1338–1331–14.
  • Lakshmanan, S.; Pradeep Kumar, M.; Dhananchezian, M.; Yuvaraj, N. (2020) Investigation of monolayer coated WC inserts on turning Ti-alloy. Materials and Manufacturing Processes, 35(7): 826–835. doi:10.1080/10426914.2020.1711930
  • Lequien, P.; Poulachon, G.; Outeiro, J.C. (2018) Thermomechanical analysis induced by interrupted cutting of Ti-6Al-4V under several cooling strategies. CIRP Annals, 67(1): 91–94. doi:10.1016/j.cirp.2018.03.018
  • Liang, X.; Liu, Z. (2018) Tool wear behaviors and corresponding machined surface topography during high-speed machining of Ti-6Al-4V with fine grain tools. Tribology International, 121: 321–332. doi:10.1016/j.triboint.2018.01.057
  • Lin, H.; Wang, C.; Yuan, Y.; Chen, Z.; Wang, Q.; Xiong, W. (2015) Tool wear in Ti-6Al-4V alloy turning under oils on water cooling comparing with cryogenic air mixed with minimal quantity lubrication. The International Journal of Advanced Manufacturing Technology, 81(1–4): 87–101. doi:10.1007/s00170-015-7062-x
  • Liu, Z.Q.; An, Q.L.; Xu, J.Y.; Chen, M.; Han, S. (2013) Wear performance of (nc-AlTiN)/(a-Si3N4) coating and (nc-AlCrN)/(a-Si3N4) coating in high-speed machining of titanium alloys under dry and minimum quantity lubrication (MQL) conditions. Wear, 305(1–2): 249–259. doi:10.1016/j.wear.2013.02.001
  • Mia, M. (2017) Multi-response optimization of end milling parameters under through-tool cryogenic cooling condition. Measurement, 111: 134–145. doi:10.1016/j.measurement.2017.07.033
  • Mia, M.; Khan, M.A.; Rahman, S.S.; Dhar, N.R. (2016) Mono-objective and multi-objective optimization of performance parameters in high pressure coolant assisted turning of Ti-6Al-4V. International Journal of Advanced Manufacturing Technology, 90: 109–118.
  • Mia, M.; Khan, M.A.; Dhar, N.R. (2017) Study of surface roughness and cutting forces using ANN, RSM, and ANOVA in turning of Ti-6Al-4V under cryogenic jets applied at flank and rake faces of coated WC tool. The International Journal of Advanced Manufacturing Technology, 93(1–4): 975–991. doi:10.1007/s00170-017-0566-9
  • Mia, M.; Dhar, N.R. (2017) Influence of single and dual cryogenic jets on machinability characteristics in turning of Ti-6Al-4V. Journal of Engineering Manufacture, 222(3), 10.1177/0954405417737581.
  • Mia, M.; Dhar, N.R. (2019) Influence of single and dual cryogenic jets on machinability characteristics in turning of Ti-6Al-4V. Proceedings of Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture, 233(3): 711–726. doi:10.1177/0954405417737581
  • Mia, M.; Gupta, M.K.; Lozano, J.A.; Carou, D.; Yu, D.; Pimenov, Królczyk, G.; Khan, A.M.; Dhar, N.R. (2019) Multi-objective optimization and life cycle assessment of eco-friendly cryogenic N2 assisted turning of Ti-6Al-4V. Journal of Cleaner Production, 210: 121–133. doi:10.1016/j.jclepro.2018.10.334
  • Mishra, S.K.; Ghosh, S.; Aravindan, S. (2019) FEM based evaluation of Ti-6Al-4V cutting with plain and textured WC/Co tools under cryogenic cooling environment. Procedia Manufacturing, 40: 8–13. doi:10.1016/j.promfg.2020.02.003
  • Nandy, A.; Gowrishankar, M.; Paul, S. (2009) Some studies on high pressure cooling in turning of Ti–6Al–4V. International Journal of Machine Tools and Manufacture, 49(2): 182–198. doi:10.1016/j.ijmachtools.2008.08.008
  • Nandy, A.K.; Paul, S. (2008) Effect of coolant pressure, nozzle diameter, impingement angle and spot distance in high pressure cooling with neat oil in turning Ti-6Al-4V. Machining Science and Technology, 12(4): 445–473. doi:10.1080/10910340802518603
  • Nimel Sworna Ross, K.; Ganesh, M. (2019) Performance analysis of machining Ti–6Al–4V under cryogenic CO2 using PVD-TiN coated tool. Journal of Failure Analysis and Prevention, 19(3): 821–831. doi:10.1007/s11668-019-00667-1
  • Özel, T.; Sima, M.; Srivastava, A.K.; Kaftanoglu, B. (2010) Investigations on the effects of multi-layered coated inserts in machining Ti–6Al–4V alloy with experiments and finite element simulations. CIRP Annals, 59(1): 77–82. doi:10.1016/j.cirp.2010.03.055
  • Percin, M.; Aslantas, K.; Ucun, I.; Kaynak, Y.; Cicek, A. (2016) Micro-drilling of Ti–6Al–4V alloy: The effects of cooling/lubricating. Precision Engineering, 45: 450–462. doi:10.1016/j.precisioneng.2016.02.015
  • Pittala, G.M. (2018) A study the effect of CO2 cryogenic coolant in end milling of Ti-6Al-4V alloy. Procedia CIRP, 77: 445–448. doi:10.1016/j.procir.2018.08.278
  • Praetzas, C.; Teppernegg, T.; Mayr, J.; Czettl, C.; Schäfer, J.; Abele, E. (2018) Comparison of tool core temperature and active force in milling of Ti-6Al-4V alloy under different cooling conditions. Procedia Manufacturing, 18: 81–88. doi:10.1016/j.promfg.2018.11.011
  • Pu, Z.; Outeiro, J.C.; Batista, A.C.; Dillon, O.W.; Puleo, D.A.; Jawahir, I.S. (2011) Surface integrity in dry and cryogenic machining of AZ31B Mg alloy with various cutting edge radius tools. Procedia Engineering, 19: 282–287. doi:10.1016/j.proeng.2011.11.113
  • Pu, Z.; Outeiro, J.C.; Batista, A.C.; Dillon, O.W., Jr.; Puleo, D.A.; Jawahir, I.S. (2012) Enhanced surface integrity of AZ31B mg alloy by cryogenic machining towards improved functional performance of machined components. International Journal of Machine Tools and Manufacture, 56: 17–27. doi:10.1016/j.ijmachtools.2011.12.006
  • Pusavec, F.; Krajnik, P.; Kopac, J. (2010) Transitioning to sustainable production – Part I: Application on machining technologies. Journal of Cleaner Production, 18(2): 174–184. doi:10.1016/j.jclepro.2009.08.010
  • Pušavec, F.; Grguraš, D.; Koch, M.; Krajnik, P. (2019) Cooling capability of liquid nitrogen and carbon dioxide in cryogenic milling. CIRP Annals, 68(1): 73–76. doi:10.1016/j.cirp.2019.03.016
  • Rahman, M.; Wong, Y.S.; Zareena, A.R. (2003) Machinability of titanium alloys. JSME International Journal Series C, 46(1): 107–115. doi:10.1299/jsmec.46.107
  • Rahman, M.; Wang, Z.G.; Wong, Y.S. (2006) A review on high-speed machining of titanium alloys. JSME International Journal Series C, 49(1): 11–20. doi:10.1299/jsmec.49.11
  • Rance, J.; Flynn, J.; Dhokia, V.; Shokrani, A. (2019) Deterministic modelling and simulations of the internal cooling of end mills. Procedia CIRP, 82: 421–426. doi:10.1016/j.procir.2019.04.062
  • Rao, B.; Dandekar, C.R.; Shin, Y.C. (2011) An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity. Journal of Materials Processing Technology, 211(2): 294–304. doi:10.1016/j.jmatprotec.2010.10.002
  • Rao, C.M.; Sachin, B.; Rao, S.S.; Herbert, M.A. (2021) Minimum quantity lubrication through the micro-hole textured PCD and PCBN inserts in the machining of the Ti–6Al–4V alloy. Tribology International, 153: 106619. doi:10.1016/j.triboint.2020.106619
  • Revuru, R.S.; Posinasetti, N.R.; Vsn, V.R.; M, A. (2017) Application of cutting fluids in machining of titanium alloys—A review. The International Journal of Advanced Manufacturing Technology, 91(5–8): 2477–2498. doi:10.1007/s00170-016-9883-7
  • Rosemar, B.; Silva, D.; Sales, W.F.; Costa, E.S.; Ezugwu, E.O.; Bonney, J.; Da Silva, M.B.; Machado, A.R. (2017) Surface integrity and tool life when turning of Ti-6Al-4V with coolant applied by different methods. The International Journal of Advanced Manufacturing Technology, 93(5–8): 1893–1902. doi:10.1007/s00170-017-0658-6
  • Rotella, G.; Umbrello, D. (2014) Finite element modeling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy. CIRP Annals, 63(1): 69–72. doi:10.1016/j.cirp.2014.03.074
  • Sadik, M.I.; Isakson, S. (2017) The role of PVD coating and coolant nature in wear development and tool performance in cryogenic and wet milling of Ti-6Al-4V. Wear, 386–387: 204–210. doi:10.1016/j.wear.2017.02.049
  • Sales, W.F.; Schoop, J.; Jawahir, I.S. (2017) Tribological behavior of PCD tools during superfinishing turning of the Ti-6Al-4V alloy using cryogenic, hybrid and flood as lubricoolant environments. Tribology International, 114: 109–120. doi:10.1016/j.triboint.2017.03.038
  • Sartori, S.; Bordin, A.; Ghiotti, A.; Bruschi, S. (2016) Analysis of the surface integrity in cryogenic turning of Ti6Al4V produced by direct melting laser sintering. Procedia CIRP, 45: 123–126. doi:10.1016/j.procir.2016.02.328
  • Sartori, S.; Moro, L.; Ghiotti, A.; Bruschi, S. (2017a) On the tool wear mechanisms in dry and cryogenic turning additive manufactured titanium alloys. Tribology International, 105: 264–273. doi:10.1016/j.triboint.2016.09.034
  • Sartori, S.; Ghiotti, A.; Bruschi, S. (2017b) Temperature effects on the Ti-6Al-4V machinability using cooled gaseous nitrogen in semi-finishing turning. Journal of Manufacturing Processes, 30: 187–194. doi:10.1016/j.jmapro.2017.09.025
  • Sartori, S.; Ghiotti, A.; Bruschi, S. (2017c) Hybrid lubricating/cooling strategies to reduce the tool wear in finishing turning of difficult-to-cut alloys. Wear, 376–377: 107–114. doi:10.1016/j.wear.2016.12.047
  • Schoop, J.; Sales, W.F.; Jawahir, I.S. (2017) High speed cryogenic finish machining of Ti-6Al4V with polycrystalline diamond tools. Journal of Materials Processing Technology, 250: 1–8. doi:10.1016/j.jmatprotec.2017.07.002
  • Shah, P.; Khanna, N.; Chetan. (2020) Comprehensive machining analysis to establish cryogenic LN2 and LCO2 as sustainable cooling and lubrication techniques. Tribology International, 148: 106314–106315. doi:10.1016/j.triboint.2020.106314
  • Shokrani, A.; Al-Samarrai, I.; Newman, S.T. (2019) Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy. Journal of Manufacturing Processes, 43: 229–243. doi:10.1016/j.jmapro.2019.05.006
  • Shokrani, A.; Dhokia, V.; Newman, S.T. (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. International Journal of Machine Tools and Manufacture, 57: 83–101. doi:10.1016/j.ijmachtools.2012.02.002
  • Shokrani, A.; Dhokia, V.; Muñoz-Escalona, P.; Newman, S.T. (2013) State of-the-art cryogenic machining and processing. International Journal of Computer Integrated Manufacturing, 26(7): 616–648. doi:10.1080/0951192X.2012.749531
  • Shokrani, A.; Dhokia, V.; Newman, S.T. (2016a) Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti–6Al–4V titanium alloy. Journal of Manufacturing Processes, 21: 172–179. doi:10.1016/j.jmapro.2015.12.002
  • Shokrani, A.; Dhokia, V.; Newman, S.T. (2016b) Energy conscious cryogenic machining of Ti-6Al-4V titanium alloy. Proceedings of the Institution of Mechanical Engineering, Part B: Journal of Engineering Manufacture, 232(10): 1690–1706.
  • Shokrani, A.; Dhokia, V.; Newman, S.T. (2016c) Comparative investigation on using cryogenic machining in CNC milling of Ti–6Al–4V titanium alloy. Machining Science and Technology, 20(3): 475–494. doi:10.1080/10910344.2016.1191953
  • Shokrani, A.; Newman, S.T. (2019) A new cutting tool design for cryogenic machining of Ti–6Al–4V titanium alloy. Materials, 12(3): 477. 10.3390/ma12030477
  • Stampfer, B.; Golda, P.; Zanger, F.; Schießl, R.; Maas, U.; Schulze, V. (2019) Thermo mechanically coupled numerical simulation of cryogenic orthogonal cutting. Procedia CIRP, 82: 438–443. doi:10.1016/j.procir.2019.04.036
  • Shi, B.; Elsayed, A.; Damir, A.; Attia, H.; Saoubi, R.M. (2019) A hybrid modeling approach for characterization and simulation of cryogenic machining of Ti–6Al–4V alloy. Journal of Manufacturing Science and Engineering, 141(2): 021021–021021. doi:10.1115/1.4042307
  • Su, Y.; He, N.; Li, L.; Li, X.L. (2006) An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V. Wear, 261(7–8): 760–766. doi:10.1016/j.wear.2006.01.013
  • Suhaimi, M.A.; Yang, G.D.; Park, K.H.; Hisam, M.J.; Sharif, S.; Kim, D.W. (2018) Effect cryogenic machining for titanium alloy based on indirect, internal and external spray system. Procedia Manufacturing, 17: 158–165. doi:10.1016/j.promfg.2018.10.031
  • Sun, S.; Brandt, M.; Dargusch, M.S. (2010) Machining Ti–6Al–4V alloy with cryogenic compressed air cooling. International Journal of Machine Tools and Manufacture, 50(11): 933–942. doi:10.1016/j.ijmachtools.2010.08.003
  • Sun, S.; Brandt, M.; Palanisamy, S.; Dargusch, M.S. (2015) Effect of cryogenic compressed air on the evolution of cutting force and tool wear during machining of Ti–6Al–4V alloy. Journal of Materials Processing Technology, 221: 243–254. doi:10.1016/j.jmatprotec.2015.02.017
  • Tapoglou, N.; Aceves Lopez, M.I.; Cook, I.; Taylor, C.M. (2017) Investigation of the influence of CO2 cryogenic coolant application on tool wear. Procedia CIRP, 63: 745–749. doi:10.1016/j.procir.2017.03.351
  • Tahri, C.; Lequien, P.; Outeiro, J.C.; Poulachon, G. (2017) CFD simulation and optimize of LN2 flow inside channels used for cryogenic machining: Application to milling of titanium alloy Ti-6Al-4V. Procedia CIRP, 58: 584–589. doi:10.1016/j.procir.2017.03.230
  • Umbrello, D.; Bordin, A.; Imbrogno, S.; Bruschi, S. (2017) 3D finite element modelling of surface modification in dry and cryogenic machining of EBM Ti-6Al-4V alloy. CIRP Journal of Manufacturing Science and Technology, 18: 92–100. doi:10.1016/j.cirpj.2016.10.004
  • Venugopal, K.A.; Paul, S.; Chattopadhyay, A.B. (2007a) Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling. Wear, 262(9–10): 1071–1078. doi:10.1016/j.wear.2006.11.010
  • Venugopal, K.A.; Paul, S.; Chattopadhyay, A.B. (2007b) Tool wear in cryogenic turning of Ti-6Al-4V alloy. Cryogenics, 47(1): 12–18. doi:10.1016/j.cryogenics.2006.08.011
  • Vinothkumar, S.; Jie, S.; Bin, Y.; Kai, L.; Ramesh, R. (2018) Machining performance and tool wear analysis on cryogenic treated insert during end milling of Ti-6Al-4V alloy. Journal of Manufacturing Processes, 36: 188–196.
  • Vipindas, K.; Jose, M. (2019) Wear behavior of TiAlN coated WC tool during micro end milling of Ti-6Al-4V and analysis of surface roughness. Wear, 424–425: 165–182. doi:10.1016/j.wear.2019.02.018
  • Wang, Y.; Liu, J.; Liu, K.; Liu, Z.; Wang, S.; Dai, M. (2020a) Modeling of temperature distribution in turning of Ti-6Al-4V with liquid nitrogen cooling. The International Journal of Advanced Manufacturing Technology, 107(1–2): 451–462. doi:10.1007/s00170-020-05093-4
  • Wang, Y.; Dai, M.; Liu, K.; Liu, J.; Han, L.; Liu, H. (2020b) Research on surface heat transfer mechanism of liquid nitrogen jet cooling in cryogenic machining. Applied Thermal Engineering, 179: 115607–115614. doi:10.1016/j.applthermaleng.2020.115607
  • Wang, Z.Y.; Rajurkar, K.P. (2000) Cryogenic machining of hard-to-cut materials. Wear, 239(2): 168–175. doi:10.1016/S0043-1648(99)00361-0
  • Wika, K.K.; Gurdal, O.; Litwa, P.; Hitchens, C. (2019) Influence of supercritical CO2 cooling on tool wear and cutting forces in the milling of Ti-6Al-4V. Procedia CIRP, 82: 89–94. doi:10.1016/j.procir.2019.04.169
  • Yi, S.; Li, G.; Ding, S.; Mo, J. (2017) Performance and mechanisms of graphene oxide suspended cutting fluid in the drilling of titanium alloy Ti-6Al-4V. Journal of Manufacturing Processes, 29: 182–193. doi:10.1016/j.jmapro.2017.07.027
  • Yi, S.; Li, J.; Zhu, J.; Wang, X.; Mo, J.; Ding, S. (2020) Investigation of machining Ti-6Al-4V with graphene oxide nanofluids: Tool wear, cutting forces and cutting vibration. Journal of Manufacturing Processes, 49: 35–49. doi:10.1016/j.jmapro.2019.09.038
  • Yousfi, M.; Outeiro, J.C.; Nouveau, C.; Marcon, B.; Zouhair, B. (2017) Tribological behavior of PVD hard coated cutting tools under cryogenic cooling conditions. Procedia CIRP, 58: 561–565. doi:10.1016/j.procir.2017.03.269
  • Yuan, S.M.; Yan, L.T.; Liu, W.D.; Liu, Q. (2011) Effects of cooling air temperature on cryogenic machining of Ti–6Al–4V alloy. Journal of Materials Processing Technology, 211(3): 356–362. doi:10.1016/j.jmatprotec.2010.10.009
  • Zhang, C.; Zhang, S.; Yan, X.; Zhang, Q. (2016) Effects of internal cooling channel structures on cutting forces and tool life in side milling of H13 Steel under cryogenic minimum quantity lubrication condition. The International Journal of Advanced Manufacturing Technology, 83(5–8): 975–984. doi:10.1007/s00170-015-7644-7
  • Zhao, W.; Gong, L.; Ren, F.; Li, L.; Xu, Q.; Khan, A.M. (2018) Experimental study on chip deformation of Ti-6Al-4V titanium alloy in cryogenic cutting. The International Journal of Advanced Manufacturing Technology, 96(9–12): 4021–4027. doi:10.1007/s00170-018-1890-4
  • Zaman, P.B.; Dhar, N.R. (2020) Multi-objective optimization of double-jet MQL system parameters meant for enhancing the turning performance of Ti–6Al–4V alloy. Arabian Journal for Science and Engineering, 45: 9505–9526.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.