210
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Machining performance and sustainability analysis of Al2O3-CuO hybrid nanofluid MQL application for milling of Ti-6Al-4V

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abbas, A.T.; Anwar, S.; Abdelnasser, E.; Luqman, M.; Qudeiri, J.E.A.; Elkaseer, A. (2021) Effect of different cooling strategies on surface quality and power consumption in finishing end milling of stainless steel 316. Materials, 14(4): 903. doi:10.3390/ma14040903
  • Abukhshim, N.A.; Mativenga, P.T.; Sheikh, M.A. (2006) Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining. International Journal of Machine Tools and Manufacture, 46(7-8): 782–800. doi:10.1016/j.ijmachtools.2005.07.024
  • Airao, J.; Khanna, N.; Nirala, C.K. (2022) Tool wear reduction in machining inconel 718 by using novel sustainable cryo-lubrication techniques. Tribology International, 175: 107813. doi:10.1016/j.triboint.2022.107813
  • Altintas, Y. (2000) Modeling approaches and software for predicting the performance of milling operations at mal-Ubc. Machining Science and Technology, 4(3): 445–478. doi:10.1080/10940340008945718
  • Altintas, Y. (2012) Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, Cambridge University Press, Vancouver. doi:10.1017/CBO9780511843723
  • Andreas, J.M.; Hauser, E.A.; Tucker, W.B. (1938) Boundary tension by pendant drops. The Journal of Physical Chemistry, 42(8): 1001–1019. doi:10.1021/j100903a002
  • Bai, X.; Li, C.; Dong, L.; Yin, Q. (2019) Experimental evaluation of the lubrication performances of different nanofluids for Minimum Quantity Lubrication (MQL) in milling Ti-6Al-4V. The International Journal of Advanced Manufacturing Technology, 101(9-12): 2621–2632. doi:10.1007/s00170-018-3100-9
  • El Baradie, M.A. (1996) Cutting fluids: Part II. recycling and clean machining. Journal of Materials Processing Technology, 56(1-4): 798–806. doi: 10.1016/0924-0136(95)01893-X
  • Bhuiyan, M.H.U.; Saidur, R.; Amalina, M.A.; Mostafizur, R.M.; Islam, A. (2015) Effect of nanoparticles concentration and their sizes on surface tension of nanofluids. Procedia Engineering, 105: 431–437. doi:10.1016/j.proeng.2015.05.030
  • Budak, E.; Altintas, Y. (1998) Analytical prediction of chatter stability in milling—part I: General formulation. Journal of Dynamic Systems, Measurement, and Control, 120(1): 22–30. doi:10.1115/1.2801317
  • Camposeco-Negrete, C.; de Dios Calderón-Nájera, J. (2019) Sustainable machining as a mean of reducing the environmental impacts related to the energy consumption of the machine tool: A case study of AISI 1045 steel machining. The International Journal of Advanced Manufacturing Technology, 102(1-4): 27–41. doi:10.1007/s00170-018-3178-0
  • Carou, D.; Rubio, E.M.; Agustina, B.; Marín, M.M. (2017) Experimental study for the effective and sustainable repair and maintenance of bars made of Ti-6Al-4V alloy. Application to the aeronautic industry. Journal of Cleaner Production, 164: 465–475. doi:10.1016/j.jclepro.2017.06.095
  • Channa, I.A.; Ashfaq, J.; Gilani, S.J.; Shah, A.A.; Chandio, A.D.; Jumah, M. N. B (2022) UV Blocking and oxygen barrier coatings based on polyvinyl alcohol and zinc oxide nanoparticles for packaging applications. Coatings, 12(7): 897. doi:10.3390/coatings12070897
  • Chaudhari, S.S.; Chakule, R.R.; Talmale, P.S. (2019) Experimental study of heat transfer characteristics of Al2O3 and CuO nanofluids for machining application. Materials Today: Proceedings, 18: 788–797. doi:10.1016/j.matpr.2019.06.499
  • Das, A.; Bajpai, V. (2023) Machinability analysis of lead free brass in high speed micro turning using minimum quantity lubrication. CIRP Journal of Manufacturing Science and Technology, 41: 180–195. doi:10.1016/j.cirpj.2022.11.023
  • Debnath, S.; Reddy, M.M.; Yi, Q.S. (2014) Environmental friendly cutting fluids and cooling techniques in machining: a review. Journal of Cleaner Production, 83: 33–47. doi:10.1016/j.jclepro.2014.07.071
  • Edelbi, A.; Kumar, R.; Sahoo, A.K.; Pandey, A. (2023) Comparative machining performance investigation of dual-nozzle MQL-Assisted ZnO and al2o3 nanofluids in face milling of Ti–3Al–2.5V alloys. Arabian Journal for Science and Engineering, 48(3): 2969–2993. doi:10.1007/s13369-022-07072-1
  • Ezugwu, E.O. (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. International Journal of Machine Tools and Manufacture, 45(12-13): 1353–1367. doi:10.1016/J.IJMACHTOOLS.2005.02.003
  • Ezugwu, E.O.; Bonney, J.; Da Silva, R.B.; Çakir, O. (2007) surface integrity of finished turned Ti-6Al-4V Alloy with PCD tools using conventional and high pressure coolant supplies. International Journal of Machine Tools and Manufacture, 47(6): 884–891. doi:10.1016/j.ijmachtools.2006.08.005
  • Ezugwu, E.O.; Wang, Z.M. (1997) Titanium alloys and their machinability—a review. Journal of Materials Processing Technology, 68(3): 262–274. doi:10.1016/B978-0-12-801238-3.99864-7 10.1016/S0924-0136(96)00030-1
  • Farajollahi, B.; Etemad, S.G.; Hojjat, M. (2010) Heat transfer of nanofluids in a shell and tube heat exchanger. International Journal of Heat and Mass Transfer, 53(1-3): 12–17. doi:10.1016/j.ijheatmasstransfer.2009.10.019
  • Gaurav, G.; Sharma, A.; Dangayach, G.S.; Meena, M.L. (2020) Assessment of jojoba as a pure and nano-fluid base oil in Minimum Quantity Lubrication (MQL) Hard-Turning of Ti–6Al–4V: A step towards sustainable machining. Journal of Cleaner Production, 272: 122553. doi:10.1016/j.jclepro.2020.122553
  • Gugulothu, S.; Pasam, V.K. (2022) Experimental Investigation to study the performance of CNT/MoS 2 hybrid nanofluid in turning of AISI 1040 stee. Australian Journal of Mechanical Engineering, 20(3): 814–824. doi:10.1080/14484846.2020.1756067
  • Günan, F.; Kıvak, T.; Yıldırım, Ç.V.; Sarıkaya, M. (2020) Performance evaluation of MQL with AL2O3 mixed nanofluids prepared at different concentrations in milling of hastelloy C276 alloy. Journal of Materials Research and Technology, 9(5): 10386–10400. doi:10.1016/j.jmrt.2020.07.018
  • Haapala, K.R.; Zhao, F.; Camelio, J.; Sutherland, J.W.; Skerlos, S.J.; Dornfeld, D.A.; Jawahir, I.S.; Clarens, A.F.; Rickli, J.L. (2013) A review of engineering research in sustainable manufacturing. Journal of Manufacturing Science and Engineering, 135(4): 041013. doi:10.1115/1.4024040
  • Haghnazari, S.; Abedini, V. (2021) Effects of Hybrid Al2O3–CuO nanofluids on surface roughness and machining forces during turning AISI 4340. SN Applied Sciences, 3(2): 203. doi:10.1007/s42452-020-04088-w
  • Hassanpour, H.; Sadeghi, M.H.; Rasti, A.; Shajari, S. (2016) Investigation of surface roughness, microhardness and white layer thickness in hard milling of AISI 4340 using minimum quantity lubrication. Journal of Cleaner Production, 120: 124–134. doi:10.1016/j.jclepro.2015.12.091
  • Hayat, T.; Nadeem, S. (2017) Heat transfer enhancement with Ag–CuO/Water hybrid nanofluid. Results in Physics, 7: 2317–2324. doi:10.1016/j.rinp.2017.06.034
  • He, T.; Liu, N.; Xia, H.; Wu, L.; Zhang, Y.; Li, D.; Chen, Y. (2023) Progress and trend of Minimum Quantity Lubrication (MQL): a comprehensive review. Journal of Cleaner Production, 386: 135809. doi:10.1016/j.jclepro.2022.135809
  • Hegab, H.A.; Darras, B.; Kishawy, H.A. (2018) Towards sustainability assessment of machining processes. Journal of Cleaner Production, 170: 694–703. doi:10.1016/j.jclepro.2017.09.197
  • Hegab, H.; Shaban, I.; Jamil, M.; Khanna, N. (2023) Toward sustainable future: Strategies, indicators, and challenges for implementing sustainable production systems. Sustainable Materials and Technologies, 36: e00617. doi:10.1016/j.susmat.2023.e00617
  • Honnorat, Y. (1996) Issues and breakthrough in the manufacture of turboengine titanium parts. Materials Science and Engineering: A, 213(1-2): 115–123. 10.1016/0921-5093(96)10229-X
  • Hubbard, K.M.; Callahan, R.N.; Strong, S.D. (2008) A standardized model for the evaluation of machining coolant/lubricant costs. The International Journal of Advanced Manufacturing Technology, 36(1-2): 1–10. doi:10.1007/s00170-006-0806-x
  • International Air Transport Association (2023) IATA Members. https://www.iata.org/en/about/members/airline-list/
  • Iqbal, S.M.; Raj, C.S.; Michael, J.J.; Irfan, A.M. (2017) a comparative investigation of Al2O3/H2O, SiO2/H2O and ZrO2/H2O nanofluid for heat transfer applications. Digest Journal of Nanomaterials and Biostructures, 12(2): 255–263.
  • Ishfaq, K.; Anjum, I.; Pruncu, C.I.; Amjad, M.; Kumar, M.S.; Maqsood, M.A. (2021) Progressing towards sustainable machining of steels: A detailed review. Materials, 14(18): 5162. doi:10.3390/ma14185162
  • Jadam, T.; Rakesh, M.; Datta, S. (2020) Machinability of Ti–6Al–4V Superalloy: performance of dry cutting and nanofluid MQL (MWCNT-Added Rice Bran Oil). Arabian Journal for Science and Engineering, 45(7): 5673–5695. doi:10.1007/s13369-020-04516-4
  • James, S.; Mazaheri, M. (2023) Study on high-speed machining of 2219 aluminum utilizing nanoparticle-enhanced Minimum Quantity Lubrication (MQL) Technique. Surfaces, 6(1): 29–39. doi:10.3390/surfaces6010003
  • Jamil, M.; He, N.; Zhao, W.; Khan, A.M.; Laghari, R.A. (2022) Tribology and machinability performance of hybrid Al2O3 -MWCNTs nanofluids-assisted MQL for milling Ti-6Al-4 V. The International Journal of Advanced Manufacturing Technology, 119(3-4): 2127–2144. doi:10.1007/s00170-021-08279-6
  • Jayal, A.D.; Badurdeen, F.; Dillon, O.W.; Jawahir, I.S. (2010) Sustainable manufacturing: modeling and optimization challenges at the product, process and system levels. CIRP Journal of Manufacturing Science and Technology, 2(3): 144–152. doi:10.1016/j.cirpj.2010.03.006
  • Jouyban, A.; Fathi-Azarbayj, A. (2012) Experimental and computational methods pertaining to surface tension of pharmaceuticals. In Toxicity and drug testing. InTech. doi:10.5772/21005
  • Khan, M.Q.; Kharaghani, D.; Nishat, N.; Shahzad, A.; Hussain, T.; Khatri, Z.; Zhu, C.; Kim, I.S. (2019) Preparation and characterizations of multifunctional PVA/ZnO nanofibers composite membranes for surgical gown application. Journal of Materials Research and Technology, 8(1): 1328–1334. doi:10.1016/j.jmrt.2018.08.013
  • Khandekar, S.; Sankar, M.R.; Agnihotri, V.; Ramkumar, J. (2012) Nano-cutting fluid for enhancement of metal cutting performance. Materials and Manufacturing Processes, 27(9): 963–967. doi:10.1080/10426914.2011.610078
  • Khanna, N.; Kshitij, G.; Solanki, M.; Bhatt, T.; Patel, O.; Uysal, A.; Sarıkaya, M. (2023) In pursuit of sustainability in machining thin walled α titanium tubes: an industry supported study. Sustainable Materials and Technologies, 36: e00647. doi:10.1016/j.susmat.2023.e00647
  • Khanna, N.; Wadhwa, J.; Pitroda, A.; Shah, P.; Schoop, J.; Sarıkaya, M. (2022) Life cycle assessment of environmentally friendly initiatives for sustainable machining: a short review of current knowledge and a case study. Sustainable Materials and Technologies, 32: e00413. doi:10.1016/j.susmat.2022.e00413
  • Khatai, S.; Sahoo, A.K.; Kumar, R.; Panda, A. (2023) Recent research progress on various cooling and lubrication techniques used in sustainable hard machining: a comprehensive review. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, doi:10.1177/09544089231169655
  • Kumar, M.S.; Krishna, V.M. (2020) An investigation on turning AISI 1018 steel with hybrid biodegradeable nanofluid/MQL incorporated with combinations of CuO-Al2O3 nanoparticles. Materials Today: Proceedings, 24(2): 1577–1584. 10.1016/j.matpr.2020.04.478
  • Liao, Z.; la Monaca, A.; Murray, J.; Speidel, A.; Ushmaev, D.; Clare, A.; Axinte, D.; M'Saoubi, R. (2021) Surface integrity in metal machining - part I: Fundamentals of surface characteristics and formation mechanisms. International Journal of Machine Tools and Manufacture, 162: 103687. doi:10.1016/j.ijmachtools.2020.103687
  • Liu, G.; Li, C.; Zhang, Y.; Yang, M.; Jia, D.; Zhang, X.; Guo, S.; Li, R.; Zhai, H. (2018) Process Parameter optimization and experimental evaluation for nanofluid MQL in grinding Ti-6Al-4V based on grey relational analysis. Materials and Manufacturing Processes, 33(9): 950–963. doi:10.1080/10426914.2017.1388522
  • Liu, G.; Li, X.; Qin, B.; Xing, D.; Guo, Y.; Fan, R. (2004) Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribology Letters, 17(4): 961–966. doi:10.1007/s11249-004-8109-6
  • Mahboob Ali, M.A.; Azmi, A.I.; Mohd Khalil, A.N.; Leong, K.W. (2017) Experimental study on minimal nanolubrication with surfactant in the turning of titanium alloys. The International Journal of Advanced Manufacturing Technology, 92(1-4): 117–127. doi:10.1007/s00170-017-0133-4
  • Makhesana, M.A.; Patel, K.M.; Krolczyk, G.M.; Danish, M.; Singla, A.K.; Khanna, N. (2023) Influence of MoS2 and graphite-reinforced nanofluid-MQL on surface roughness, tool wear, cutting temperature and microhardness in machining of inconel 625. CIRP Journal of Manufacturing Science and Technology, 41: 225–238. doi:10.1016/j.cirpj.2022.12.015
  • Makhesana, M.A.; Patel, K.M.; Mawandiya, B.K. (2021) Environmentally conscious machining of inconel 718 with solid lubricant assisted minimum quantity lubrication. Metal Powder Report, 76: 24–29. doi:10.1016/j.mprp.2020.08.008
  • MAL Manufacturing Automation Lab. Inc. (2023). www.malinc.com
  • Maruda, R.W.; Arkusz, K.; Szczotkarz, N.; Wojciechowski, S.; Niesłony, P.; Królczyk, G.M. (2023) Analysis of size and concentration of nanoparticles contained in cutting fluid during turning of 316L steel in minimum quantity lubrication conditions. Journal of Manufacturing Processes, 87: 106–122. doi:10.1016/j.jmapro.2022.12.065
  • Masoudi, S.; Esfahani, M.J.; Jafarian, F.; Mirsoleimani, S.A. (2023) Comparison the effect of MQL, Wet and dry turning on surface topography, cylindricity tolerance and sustainability. International Journal of Precision Engineering and Manufacturing-Green Technology, 10(1): 9–21. doi:10.1007/s40684-019-00042-3
  • Megatif, L.; Ghozatloo, A.; Arimi, A.; Shariati-Niasar, M. (2016) Investigation of laminar convective heat transfer of a novel Tio 2 –carbon nanotube hybrid water-based nanofluid. Experimental Heat Transfer, 29(1): 124–138. doi:10.1080/08916152.2014.973974
  • Minh Duc., T, The Long, T. (2020) The characteristics and application of nanofluids in MQL and MQCL for sustainable cutting processes. In Advances in Microfluidic Technologies for Energy and Environmental Applications. IntechOpen. doi:10.5772/intechopen.90362
  • Namlu, R.H.; Sadigh, B.L. (2022) Vibration-assisted machining of aerospace materials. In M. C. Kuşhan, S. Gürgen, and M. A. Sofuoğlu (Eds.), 259–292. Materials, Structures and Manufacturing for Aircraft, Springer. 10.1007/978-3-030-91873-6
  • Namlu, R.H.; Sadigh, B.L.; Kiliç, S.E. (2021) An Experimental investigation on the effects of combined application of Ultrasonic Assisted Milling (UAM) and Minimum Quantity Lubrication (MQL) on cutting forces and surface roughness of Ti-6AL-4V. Machining Science and Technology, 25(5): 738–775. doi:10.1080/10910344.2021.1971706
  • Namlu, R.H.; Turhan, C.; Sadigh, B.L.; Kılıç, S.E. (2020) Cutting force prediction in ultrasonic-assisted milling of Ti–6Al–4V with different machining conditions using artificial neural network. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 35(1): 37–48. doi:10.1017/s0890060420000360
  • Namlu, R.H.; Yılmaz, O.D.; Lotfisadigh, B.; Kılıç, S.E. (2022) An experimental study on surface quality of Al6061-T6 in ultrasonic vibration-assisted milling with minimum quantity lubrication. Procedia CIRP, 108: 311–316. doi:10.1016/J.PROCIR.2022.04.071
  • Nečas, D.; Klapetek, P. (2012) Gwyddion: An open-source software for SPM data analysis. Open Physics, 10(1): 181–188. doi:10.2478/s11534-011-0096-2
  • Osman, K.A.; Ünver, H.Ö.; Şeker, U. (2019) Application of minimum quantity lubrication techniques in machining process of titanium alloy for sustainability: A review. The International Journal of Advanced Manufacturing Technology, 100(9-12): 2311–2332. doi:10.1007/s00170-018-2813-0
  • Rahmati, B.; Sarhan, A.A.D.; Sayuti, M. (2014) Morphology of Surface generated by end milling AL6061-T6 Using Molybdenum Disulfide (MoS2) nanolubrication in end milling machining. Journal of Cleaner Production, 66: 685–691. doi:10.1016/j.jclepro.2013.10.048
  • Ramachandran, R.; Ganesan, K.; Asirvatham, L. (2016) The role of hybrid nanofluids in improving the thermal characteristics of screen mesh cylindrical heat pipes. Thermal Science, 20(6): 2027–2035. doi:10.2298/TSCI150710006R
  • Ross, N.S.; Mia, M.; Anwar, S.; G, M.; Saleh, M.; Ahmad, S. (2021) A hybrid approach of cooling lubrication for sustainable and optimized machining of Ni-based industrial alloy. Journal of Cleaner Production, 321: 128987. doi:10.1016/j.jclepro.2021.128987
  • Rotella, G.; Umbrello, D.; Dillon O.W. Jr; Jawahir, I.S. (2012) Evaluation of process performance for sustainable hard machining. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 6(6): 989–998. doi:10.1299/jamdsm.6.989
  • Roushan, A.; Rao, U.S.; Patra, K.; Sahoo, P. (2022) Performance evaluation of tool coatings and Nanofluid MQL on the micro-machinability of Ti-6Al-4V. Journal of Manufacturing Processes, 73: 595–610. doi:10.1016/j.jmapro.2021.11.030
  • Routara, B.C.; Nanda, B.K.; Sahoo, A.K.; Thatoi, D.N.; Nayak, B.B. (2011) Optimisation of multiple performance characteristics in abrasive jet machining using grey relational analysis. International Journal of Manufacturing Technology and Management, 24(1/2/3/4): 4–4. doi:10.1504/IJMTM.2011.046757
  • Roy, S.; Kumar, R.; Kumar Sahoo, A.; Kumar Das, R. (2019) A brief review on effects of conventional and nano particle based machining fluid on machining performance of minimum quantity lubrication machining. Materials Today: Proceedings, 18: 5421–5431. doi:10.1016/j.matpr.2019.07.571
  • Sahoo, A.K.; Kumar, R.; Panda, A.; Mishra, P.C.; Mohanty, T. (2023) Assessment of sustainable dry and MQL-assisted hard machining using MTCVD multilayered coated carbide (TiN/TiCN/Al2O3) Insert. Canadian Metallurgical Quarterly, 62(4): 651–664. doi:10.1080/00084433.2022.2126579
  • Said, Z.; Gupta, M.; Hegab, H.; Arora, N.; Khan, A.M.; Jamil, M.; Bellos, E. (2019) A Comprehensive review on Minimum Quantity Lubrication (MQL) in machining processes using nano-cutting fluids. The International Journal of Advanced Manufacturing Technology, 105(5-6): 2057–2086. doi:10.1007/s00170-019-04382-x
  • Sajid, M.U.; Ali, H.M. (2018) Thermal conductivity of hybrid nanofluids: A critical review. International Journal of Heat and Mass Transfer, 126: 211–234. doi:10.1016/j.ijheatmasstransfer.2018.05.021
  • Sarhan, A.A.D.; Sayuti, M.; Hamdi, M. (2012) Reduction of power and lubricant oil consumption in milling process using a new SiO2 nanolubrication system. The International Journal of Advanced Manufacturing Technology, 63(5-8): 505–512. doi:10.1007/s00170-012-3940-7
  • Sarkar, J.; Ghosh, P.; Adil, A. (2015) A review on hybrid nanofluids: recent research, development and applications. Renewable and Sustainable Energy Reviews, 43: 164–177. doi:10.1016/j.rser.2014.11.023
  • Setti, D.; Sinha, M.K.; Ghosh, S.; Rao, P.V. (2014) An investigation into the application of Al2O3nanofluid–Based minimum quantity lubrication technique for grinding of Ti–6Al–4V. International Journal of Precision Technology, 4(3/4): 268–279. 10.1504/IJPTECH.2014.067742
  • Setti, D.; Sinha, M.K.; Ghosh, S.; Venkateswara Rao, P. (2015) Performance evaluation of Ti-6Al-4V grinding using chip formation and coefficient of friction under the influence of nanofluids. International Journal of Machine Tools and Manufacture, 88: 237–248. doi:10.1016/j.ijmachtools.2014.10.005
  • Shabgard, M.; Seyedzavvar, M.; Mohammadpourfard, M. (2017) Experimental investigation into lubrication properties and mechanism of vegetable-based CuO nanofluid in MQL grinding. The International Journal of Advanced Manufacturing Technology, 92(9-12): 3807–3823. doi:10.1007/s00170-017-0319-9
  • Sharma, A.K.; Tiwari, A.K.; Dixit, A.R. (2016) Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: a comprehensive review. Journal of Cleaner Production, 127: 1–18. doi:10.1016/j.jclepro.2016.03.146
  • Silva, L.R.; Corrêa, E.C.S.; Brandão, J.R.; de Ávila, R.F. (2020) Environmentally friendly manufacturing: Behavior analysis of minimum quantity of lubricant - MQL in grinding process. Journal of Cleaner Production, 256: 103287. doi:10.1016/j.jclepro.2013.01.033
  • Şirin, Ş.; Kıvak, T. (2021) Effects of hybrid nanofluids on machining performance in MQL-Milling of Inconel X-750 superalloy. Journal of Manufacturing Processes, 70: 163–176. doi:10.1016/j.jmapro.2021.08.038
  • Sivalingam, V.; Zhou, Q.; Selvam, B.; Sun, J.; Pandiyan, K.; Gupta, M.K.; Korkmaz, M.E. (2023) A mathematical approach of evaluating sustainability indicators in milling of aluminium hybrid composite by different eco-friendly cooling strategies. Sustainable Materials and Technologies, 36: e00605. doi:10.1016/j.susmat.2023.e00605
  • Sun, F.J.; Qu, S.G.; Pan, Y.X.; Li, X.Q.; Li, F.L. (2015) Effects of Cutting parameters on dry machining Ti-6Al-4V alloy with ultra-hard tools. The International Journal of Advanced Manufacturing Technology, 79(1-4): 351–360. doi:10.1007/s00170-014-6717-3
  • Swain, S.; Kumar, R.; Panigrahi, I.; Sahoo, A.K.; Panda, A. (2022) Machinability performance investigation in CNC turning of Ti–6Al–4V Alloy: Dry versus iron-aluminium oil coupled MQL machining comparison. International Journal of Lightweight Materials and Manufacture, 5(4): 496–509. doi:10.1016/j.ijlmm.2022.06.002
  • Taha-Tijerina, J.J.; Edinbarough, I.A. (2023) Comparative cutting fluid study on optimum Grinding parameters of Ti-6Al-4V alloy using flood, Minimum Quantity Lubrication (MQL), and nanofluid MQL (NMQL). Lubricants, 11(6): 250. doi:10.3390/lubricants11060250
  • Tai, B.L.; Dasch, J.M.; Shih, A.J. (2011) Evaluation and comparison of lubricant properties in minimum quantity lubrication machining. Machining Science and Technology, 15(4): 376–391. doi:10.1080/10910344.2011.620910
  • United States Environmental Protection Agency (2023) Sustainable manufacturing. https://www.epa.gov/sustainability/sustainable-manufacturing#:∼:text=Sustainable%20manufacturing%20is%20the%20creation,employee%2C%20community%20and%20product%20safety
  • Vafaei, S.; Borca-Tasciuc, T.; Podowski, M.Z.; Purkayastha, A.; Ramanath, G.; Ajayan, P.M. (2006) Effect of nanoparticles on sessile droplet contact angle. Nanotechnology, 17(10): 2523–2527. doi:10.1088/0957-4484/17/10/014
  • Venugopal, K.A.; Paul, S.; Chattopadhyay, A.B. (2007) Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling. Wear, 262(9-10): 1071–1078. doi:10.1016/j.wear.2006.11.010
  • Wang, H.; Bai, Q.; Chen, S.; Dou, Y.; Guo, W.; Wang, T. (2023) Performance Evaluation of graphene nanofluid to mitigate the wear of a diamond tool in micro-machining of Ti6Al4V alloy. Journal of Manufacturing and Materials Processing, 7(4): 131. doi:10.3390/jmmp7040131
  • Wang, Y.; Li, C.; Zhang, Y.; Li, B.; Yang, M.; Zhang, X.; Guo, S.; Liu, G.; Zhai, M. (2017) Comparative evaluation of the lubricating properties of vegetable-oil-based nanofluids between frictional test and grinding experiment. Journal of Manufacturing Processes, 26: 94–104. doi:10.1016/j.jmapro.2017.02.001
  • Wasiuk, D.K.; Lowenberg, M.H.; Shallcross, D.E. (2015) An aircraft performance model implementation for the estimation of global and regional commercial aviation fuel burn and emissions. Transportation Research Part D: Transport and Environment, 35: 142–159. doi:10.1016/j.trd.2014.11.022
  • Wegman, D.H. (1996) Machining operations and associated machining fluid exposures: issues for health and safety intervention in manufacturing. American Journal of Industrial Medicine, 29(4): 397–401. doi: 10.1002/(SICI)1097-0274(199604)29:4<397::AID-AJIM24>3.0.CO;2-W
  • Wei, B.; Zou, C.; Yuan, X.; Li, X. (2017) Thermo-physical property evaluation of diathermic oil based hybrid nanofluids for heat transfer applications. International Journal of Heat and Mass Transfer, 107: 281–287. doi:10.1016/j.ijheatmasstransfer.2016.11.044
  • Wu, Y.Y.; Tsui, W.C.; Liu, T.C. (2007) Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear, 262(7-8): 819–825. doi:10.1016/j.wear.2006.08.021
  • Yıldırım, Ç.V.; Sarıkaya, M.; Kıvak, T.; Şirin, Ş. Ş. (2019) The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based inconel 625. Tribology International, 134: 443–456. doi:10.1016/j.triboint.2019.02.027
  • Young, T. (1805) An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95: 65–87. doi:10.1098/rstl.1805.0005
  • Yu, W.; Xie, H. (2012) A review on nanofluids: preparation, stability mechanisms, and applications. Journal of Nanomaterials, 2012: 1–17. doi:10.1155/2012/435873
  • Zaman, P.B.; Tusar, M.I.H.; Dhar, N.R. (2022) Selection of appropriate process inputs for turning Ti-6Al-4V Alloy under Hybrid Al2O3-MWCNT nano-fluid based MQL. Advances in Materials and Processing Technologies, 8(1): 380–400. doi:10.1080/2374068X.2020.1812324
  • Zhang, C.; Zhang, S.; Yan, X.; Zhang, Q. (2016) Effects of internal cooling channel structures on cutting forces and tool life in side milling of h13 steel under cryogenic minimum quantity lubrication condition. The International Journal of Advanced Manufacturing Technology, 83(5-8): 975–984. doi:10.1007/s00170-015-7644-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.