567
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Grinding optimization using nondestructive testing (NDT) and empirical models

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Antony, J. (2014) Design of Experiments for Engineers and Scientists. Elsevier.
  • Azarhoushang, B.; Daneshi, A.; Lee, D.H. (2017) Evaluation of thermal damages and residual stresses in dry grinding by structured wheels. Journal of Cleaner Production, 142: 1922–1930. doi:10.1016/j.jclepro.2016.11.091
  • Canale, L.C.F.; Vatavuk, J.; Totten, G.E.; Luo, X. (2014) Problems associated with heat treating, In ASM Handbook, Steel Heat Treating Technologies, Vol. 4B. doi:10.31399/asm.hb.v04b.a0005967
  • Chen, X.; Rowe, W.B.; McCormack, D.F. (2000) Analysis of the transitional temperature for tensile residual stress in grinding. Journal of Materials Processing Technology, 107(1-3): 216–221. doi:10.1016/S0924-0136(00)00692-0
  • Citti, P.; Molinari, P.; Giorgetti, A.; Polidoro, A.; Pompei, L.; Arcidiacono, G. (2021) Design and validation of low-cost handling equipment for the use of barkhausen noise testing in worm gears grinding burn detection. IOP Conference Series: Materials Science and Engineering 1038(1): 012066. 10.1088/1757-899X/1038/1/012066
  • Hamdi, H.; Zahouani, H.; Bergheau, J.M. (2004) Residual stresses computation in a grinding process. Journal of Materials Processing Technology, 147(3): 277–285. 10.1016/S0924-0136(03)00578-8
  • Hashimoto, F.; Guo, Y.B.; Warren, A.W. (2006) Surface integrity difference between hard turned and ground surfaces and its impact on fatigue life. CIRP Annals, 55(1): 81–84. 10.1016/S0007-8506(07)60371-0
  • Hauk, V. (1997) Structural and Residual Stress Analysis by Nondestructive Methods. Elsevier,
  • Heinzel, J.; Sackmann, D.; Karpuschewski, B. (2019) Micromagnetic analysis of thermally induced influences on surface integrity using the burning limit approach. Journal of Manufacturing and Materials Processing, 3(4): 93. doi:10.3390/jmmp3040093
  • Jedamski, R.; Heinzel, J.; Rößler, M.; Epp, J.; Eckebrecht, J.; Gentzen, J.; Putz, M.; Karpuschewski, B. (2020) Potential of magnetic barkhausen noise analysis for in-process monitoring of surface layer properties of steel components in grinding. TM - Technisches Messen, 87(12): 787–798. doi:10.1515/teme-2020-0048
  • Karpuschewski, B.; Inasaki, I. (2006) Monitoring systems for grinding processes. In Condition Monitoring and Control for Intelligent Manufacturing. Springer Series in Advanced Manufacturing, Wang L. and Gao R.X. (Eds.), London: Springer. doi:10.1007/1-84628-269-1_4
  • Karpuschewski, B.; Bleicher, O.; Beutner, M. (2011) Surface integrity inspection on gears using barkhausen noise analysis, 1st CIRP Conference on Surface Integrity (CSI). Procedia Engineering, 19: 162–171. doi:10.1016/j.proeng.2011.11.096
  • Karpuschewski, B.; Beutner, M.; Eckebrecht, J.; Heinzel, J.; Hüsemann, T. (2020) Surface integrity aspects in gear manufacturing, 5th CIRP CSI 2020. Procedia CIRP, 87: 3–12. doi:10.1016/j.procir.2020.05.112
  • Kleber, X.; Vincent, A. (2004) On the role of residual internal stresses and dislocations on barkhausen noise in plastically deformed steel. NDT & E International, 37(6): 439–445. 10.1016/j.ndteint.2003.11.008
  • Kopac, J.; Krajnik, P. (2006) High-performance grinding—a review. Journal of Materials Processing Technology, 175(1-3): 278–284. 10.1016/j.jmatprotec.2005.04.010
  • Koster, W.P.; Field, M.; Kahles, J.F.; Fritz, L.J.; Gatto, L.R. (1969) Surface integrity of machined structural components. Final Technical rep1 Feb 1968-30 Nov 1969.
  • Liu, Y.; Gong, S.; Li, J.; Cao, J. (2017) Effects of dressed wheel topography on patterned surface textures and grinding forces. The International Journal of Advanced Manufacturing Technology, 93(5-8): 1751–1760. doi:10.1007/s00170-017-0647-9
  • Malkin, S.; Guo, C. (2007) Thermal analysis of grinding. CIRP Annals, 56(2): 760–782. doi:10.1016/j.cirp.2007.10.005
  • Malkin, S.; Guo, C. (2008) Grinding Technology: Theory and Application of Machining with Abrasives. Industrial Press Inc.
  • Marinescu, I.D.; Rowe, W.B.; Dimitrov, B.; Ohmori, H. (2013) Tribology of Abrasive Machining Processes. William Andrew.
  • Micietova, A.; Neslusan, M.; Cep, R.; Ochodek, V.; Micieta, B.; Pagac, M. (2017) Detection of grinding burn through the high and low frequency barkhausen noise. Tehnički Vjesnik, 24(Suppl. 1): 71–77. doi:10.17559/TV-20140203083223
  • Moorthy, V.; Shaw, B.A.; Evans, J.T. (2003) Evaluation of tempered induced changes in the hardness profile of case-carburised en36 steel using magnetic barkhausen noise analysis. NDT & E International, 36(1): 43–49. doi:10.1016/S0963-8695(02)00070-1
  • Nakah, B. (2017) Material characterization using barkhausen noise analysis technique—a review. Indian Journal of Science and Technology, 10(14): 1–10. doi:10.17485/ijst/2017/v10i14/109697
  • Neslušan, M.; Čížek, J.; Kolařík, K.; Minárik, P.; Čilliková, M.; Melikhova, O. (2017) Monitoring of grinding burn via barkhausen noise emission in case-hardened steel in large-bearing production. Journal of Materials Processing Technology, 240: 104–117. 10.1016/j.jmatprotec.2016.09.015
  • Parrish, G. (1999) Carburizing: Microstructures and Properties. ASM International.
  • Sackmann, D.; Heinzel, J.; Karpuschewski, B. (2020) An approach for a reliable detection of grinding burn using the barkhausen noise multi-parameter analysis. Procedia CIRP, 87: 415–419. 10.1016/j.procir.2020.02.076
  • Santa-aho, S.; Sorsa, A.; Ruusunen, M.; Vippola, M, Tampere University of Technology (2023) Grinding burn classification with surface barkhausen noise measurements. Papers of the ECNDT 2023. Research and Review Journal of Nondestructive Testing, 1(1). 10.58286/28170
  • Schajer, G. (2013) Practical Residual Stress Measurement Methods. Hoboken: Wiley.
  • SFS-EN 15305 (2008) Non-destructive testing: test method for residual stress analysis by X-ray diffraction. SUOMEN STANDARDISOIMISLIITTO SFS
  • Shaw, B.A.; Aylott, C.; O’Hara, P.; Brimble, K. (2003) The role of residual stress on the fatigue strength of high performance gearing. International Journal of Fatigue, 25(9-11): 1279–1283. 10.1016/j.ijfatigue.2003.08.014
  • Stewart, D.M.; Stevens, K.J.; Kaiser, A.B. (2004) Magnetic barkhausen noise analysis of stress in steel. Current Applied Physics, 4(2-4): 308–311. 10.1016/j.cap.2003.11.035
  • Teixeira, P.H.; Rego, R.R.; Pinto, F.W.; de Oliveira Gomes, J.; Löpenhaus, C. 2019, Application of hall effect for assessing grinding thermal damage. Journal of Materials Processing Technology, 270: 356–364. doi:10.1016/j.jmatprotec.2019.02.019
  • Thanedar, A.; Dongre, G.G.; Joshi, S.S. (2019) Analytical modelling of temperature in cylindrical grinding to predict grinding burns. International Journal of Precision Engineering and Manufacturing, 20(1): 13–25. doi:10.1007/s12541-019-00037-9
  • Thanedar, A.; Dongre, G.G.; Singh, R.; Joshi, S.S. (2017) Surface integrity investigation including grinding Burns Using Barkhausen Noise (BNA). Journal of Manufacturing Processes, 30: 226–240. 10.1016/j.jmapro.2017.09.026
  • Tomkowski, R.; Sorsa, A.; Santa-aho, S.; Lundin, P.; Vippola, M. (2019) Statistical evaluation of Barkhausen Noise Testing (BNT) for ground samples. Sensors, 19(21): 4716. doi:10.3390/s19214716
  • Torrance, A.A. (1979) Metallurgical effects associated with grinding. In Proceedings of the Nineteenth International Machine Tool Design and Research Conference, 637–644. Palgrave, London.
  • Turner, J.R.; Thayer, J. (2001) Introduction to Analysis of Variance: Design, Analysis & Interpretation: Design, Analysis & Interpretation. Sage.
  • Zhang, Z.P.; Qi, Y.H.; Delagnes, D.; Bernhart, G. (2007) Microstructure variation and hardness diminution during low cycle fatigue of 55NiCrMoV7 steel. Journal of Iron and Steel Research International, 14(6): 68–73. 10.1016/S1006-706X(07)60093-4
  • As, S.; Skallerud, B.; Tveiten, B. (2008) Surface roughness characterization for fatigue life predictions using finite element analysis. International Journal of Fatigue, 30(12): 2200–2209. 10.1016/j.ijfatigue.2008.05.020