179
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Machine learning coupled with acoustic emission signal features for tool wear estimation during ultrasonic machining of Inconel 718

&

References

  • Adithan, M. (1974) Tool wear studies in ultrasonic drilling. Wear, 29(1): 81–93. doi: 10.1016/0043-1648(74)90136-7
  • Adithan, M.; Venkatesh, V.C. (1975) Tool wear mechanisms in ultrasonic drilling. Wear, 34(3): 449–453. doi: 10.1016/0043-1648(75)90111-8
  • Antić, A.; Popović, B.; Krstanović, L.; Obradović, R.; Milošević, M. (2018) Novel texture-based descriptors for tool wear condition monitoring. Mechanical Systems and Signal Processing, 98: 1–15. doi: 10.1016/j.ymssp.2017.04.030
  • Arun, A.; Rameshkumar, K.; Unnikrishnan, D.; Sumesh, A. (2018) Tool condition monitoring of cylindrical grinding process using acoustic emission sensor. Materials Today: Proceedings, 5(5): 11888–11899. doi: 10.1016/j.matpr.2018.02.162
  • Bao, Y.; Hu, Z.; Xiong, T. (2013) A PSO and pattern search based memetic algorithm for SVMs parameters optimization. Neurocomputing, 117: 98–106. doi: 10.1016/j.neucom.2013.01.027
  • Carbone, N.; Bernini, L.; Albertelli, P.; Monno, M. 2023, Assessment of milling condition by image processing of the produced surfaces. The International Journal of Advanced Manufacturing Technology, 124(5-6): 1681–1697. 10.1007/s00170-022-10516-5
  • Coady, J.; Toal, D.; Newe, T.; Dooly, G. (2019) Remote acoustic analysis for tool condition monitoring. Procedia Manufacturing, 38: 840–847. doi: 10.1016/j.promfg.2020.01.165
  • Cortes, C.; Vapnik, V. (1995) Support-vector networks. Machine Learning, 20(3): 273–297. doi: 10.1007/BF00994018
  • Das, B.; Pal, S.; Bag, S. (2017) Design and development of force and torque measurement setup for real time monitoring of friction stir welding process. Measurement, 103: 186–198. doi: 10.1016/j.measurement.2017.02.034
  • Ferrando Chacón, J.L.; Fernández de Barrena, T.; García, A.; Sáez de Buruaga, M.; Badiola, X.; Vicente, J. (2021) A novel machine learning-based methodology for tool wear prediction using acoustic emission signals. Sensors, 21(17): 5984. doi: 10.3390/s21175984
  • Gadelmawla, E.S. (2011) Estimation of surface roughness for turning operations using image texture features. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(8): 1281–1292. 10.1177/2041297510393643
  • Gómez, M.P.; Hey, A.M.; Ruzzante, J.E.; D’Attellis, C.E. (2010) Tool wear evaluation in drilling by acoustic emission. Physics Procedia, 3(1): 819–825. doi: 10.1016/j.phpro.2010.01.105
  • Govekar, E.; Gradisek, J.; Grabec, I. (2000) Analysis of acoustic emission signals and monitoring of machining processes. Ultrasonics, 38(1-8): 598–603. doi: 10.1016/S0041-624X(99)00126-2
  • Hatt, O.; Crawforth, P.; Jackson, M. (2017) On the mechanism of tool crater wear during titanium alloy machining. Wear, 374–375: 15–20. doi: 10.1016/j.wear.2016.12.036
  • Jadoun, R.S.; Kumar, P.; Mishra, B.K.; Mehta, R.C.S. (2006) Optimization of process parameters for ultrasonic drilling of advanced engineering ceramics using the taguchi approach. Engineering Optimization, 38(7): 771–787. 10.1080/03052150600733962
  • Jin, F.; Bao, Y.; Li, B.; Jin, X. (2022) Tool wear prediction in edge trimming of carbon fiber reinforced polymer using machine learning with instantaneous parameters. Journal of Manufacturing Processes, 82: 277–295. doi: 10.1016/j.jmapro.2022.08.006
  • Kataria, R.; Kumar, J.; Pabla, B.S. (2015) Experimental investigation into the hole quality in ultrasonic machining of WC-Co composite. Materials and Manufacturing Processes, 30(7): 921–933. 10.1080/10426914.2014.995052
  • Komaraiah, M.; Reddy, P.N. (1993) Relative performance of tool materials in ultrasonic machining. Wear, 161(1-2): 1–10. doi: 10.1016/0043-1648(93)90446-S
  • Kundu, P.; Luo, X.; Qin, Y.; Chang, W.; Kumar, A. (2022) A novel current sensor indicator enabled Waftr model for tool wear prediction under variable operating conditions. Journal of Manufacturing Processes, 82: 777–791. doi: 10.1016/j.jmapro.2022.08.036
  • Lemaster, R.L.; Tee, L.B.; Dornfeld, D.A. (1985) Monitoring Tool wear during wood machining with acoustic emission. Wear, 101(3): 273–282. doi: 10.1016/0043-1648(85)90081-X
  • Li, X. (2002) A brief review: acoustic emission method for tool wear monitoring during turning. International Journal of Machine Tools and Manufacture, 42(2): 157–165. doi: 10.1016/S0890-6955(01)00108-0
  • Li, Z.; Liu, X.; Incecik, A.; Gupta, M.K.; Królczyk, G.M.; Gardoni, P.( 2022) A novel ensemble deep learning model for cutting tool wear monitoring using audio sensors. Journal of Manufacturing Processes, 79: 233–249. doi: 10.1016/j.jmapro.2022.04.066
  • Mallat, S.G. (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7): 674–693. doi: 10.1109/34.192463
  • Manohar, G.; Pandey, K.M.; Maity, S.R. (2021) Characterization of Boron Carbide (B4C) particle reinforced aluminium metal matrix composites fabricated by powder metallurgy techniques–a review. Materials Today: Proceedings, 45: 6882–6888. doi: 10.1016/j.matpr.2020.12.1087
  • Mirad, M.M.; Das, B. (2023) Defect modelling and tool selection for ultrasonic machining process using finite element analysis. International Journal of Precision Engineering and Manufacturing, 24(2): 251–263. doi: 10.1007/s12541-022-00719-x
  • Popli, D.; Gupta, M. (2018) Experimental investigation of tool wear and machining rate in rotary ultrasonic machining of nickel alloy. Machining Science and Technology, 22(3): 427–453. doi: 10.1080/10910344.2017.1365896
  • Postel, M.; Aslan, D.; Wegener, K.; Altintas, Y. (2019) Monitoring of vibrations and cutting forces with spindle mounted vibration sensors. CIRP Annals, 68(1): 413–416. 10.1016/j.cirp.2019.03.019
  • Roth, J.T.; Pandit, S.M. (1999) Monitoring end-mill wear and predicting tool failure using accelerometers. Journal of Manufacturing Science and Engineering, 121(4): 559–567. 10.1115/1.2833054
  • Shen, Z.A.; Cheng, J.; Tang, C.T.; Lin, C.L.; Juang, C.F. (2022) Real-time estimation of machine cutting tool wear. Journal of the Chinese Institute of Engineers, 45(2): 117–130. doi: 10.1080/02533839.2021.2012526
  • Teti, R.; Micheletti, G.F. (1989) Tool wear monitoring through acoustic emission. CIRP Annals, 38(1): 99–102. doi: 10.1016/S0007-8506(07)62660-2
  • Turner, S.L.; Rabani, A.; Axinte, D.A.; King, C.W. (2014) Dynamic ultrasonic contact detection using acoustic emissions. Ultrasonics, 54(3): 749–753. doi: 10.1016/j.ultras.2013.10.002
  • Wang, C.; Bao, Z.; Zhang, P.; Ming, W.; Chen, M. (2019) Tool wear evaluation under minimum quantity lubrication by clustering energy of acoustic emission burst signals. Measurement, 138: 256–265. doi: 10.1016/j.measurement.2019.02.004
  • Wang, J.; Shimada, K.; Mizutani, M.; Kuriyagawa, T. (2018) Tool wear mechanism and its relation to material removal in ultrasonic machining. Wear, 394–395: 96–108. doi: 10.1016/j.wear.2017.10.010
  • Xiqing, M.; Chuangwen, X. (2009) Tool wear monitoring of acoustic emission signals from milling processes. In 2009 First International Workshop on Education Technology and Computer Science (Vol. 1, pp. 431–435). IEEE. doi: 10.1109/ETCS.2009.105
  • Zerehsaz, Y.; Shao, C.; Jin, J. (2019) Tool wear monitoring in ultrasonic welding using high-order decomposition. Journal of Intelligent Manufacturing, 30(2): 657–669. doi: 10.1007/s10845-016-1272-4
  • Zhang, P.; Zhang, X.; Cao, X.; Yu, X.; Wang, Y. (2021) Analysis on the tool wear behavior of 7050-t7451 aluminum alloy under ultrasonic elliptical vibration cutting. Wear 466: 203538. doi: 10.1016/j.wear.2020.203538

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.