232
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Wear mechanisms and cutting performance of coated carbides in milling LPBF IN718 alloy under hybrid cryogenic conditions

, , , , &

References

  • Akhtar, W.; Sun, J.; Sun, P.; Chen, W.; Saleem, Z. (2014) Tool wear mechanisms in the machining of nickel based super-alloys: A review. Frontiers of Mechanical Engineering 9(2): 106–119. doi:10.1007/s11465-014-0301-2.
  • Bagherzadeh, A.; Koc, B.; Budak, E.; Isik, M. (2022) High-speed machining of additively manufactured Inconel 718 using hybrid cryogenic cooling methods. Virtual and Physical Prototyping 17(3): 419–436. doi:10.1080/17452759.2022.2034081.
  • Brown, D.; Li, C.; Liu, Z.Y.; Fang, X.Y.; Guo, Y.B. (2018) Surface integrity of Inconel 718 by hybrid selective laser melting and milling. Virtual and Physical Prototyping 13(1): 26–31. doi:10.1080/17452759.2017.1392681.
  • Careri, F.; Umbrello, D.; Essa, K.; Attallah, M.M.; Imbrogno, S. (2021) The effect of the heat treatments on the tool wear of hybrid additive manufacturing of IN718. Wear 470-471. doi:10.1016/J.WEAR.2021.203617.
  • Chaabani, S.; Arrazola, P.J.; Ayed, Y.; Madariaga, A.; Tidu, A.; Germain, G. (2020) Surface integrity when machining Inconel 718 using conventional lubrication and carbon dioxide coolant. Procedia Manufacturing 47: 530–534. doi:10.1016/J.PROMFG.2020.04.150.
  • Chen, L.; Xu, Q.; Liu, Y.; Cai, G.; Liu, J. (2021) Machinability of the laser additively manufactured Inconel 718 superalloy in turning. The International Journal of Advanced Manufacturing Technology114(3–4): 871–882. doi: 10.1007/s00170-021-06940-8.
  • Dai, X.; Zhuang, K.; Pu, D.; Zhang, W.; Ding, H. (2020) An investigation of the work hardening behavior in interrupted cutting Inconel 718 under cryogenic conditions. Materials 13(9): 2202. doi:10.3390/ma13092202.
  • Danish, M.; Gupta, M.K.; Rubaiee, S.; Ahmed, A.; Korkmaz, M.E. (2021) Influence of hybrid cryo-MQL lubri-cooling strategy on the machining and tribological characteristics of Inconel 718. Tribology International 163: 107178. doi:10.1016/J.TRIBOINT.2021.107178.
  • De Bartolomeis, A.; Newman, S.T.; Jawahir, I.S.; Biermann, D.; Shokrani, A. (2021) Future research directions in the machining of Inconel 718. Journal of Materials Processing Technology 297: 117260. doi:10.1016/J.JMATPROTEC.2021.117260.
  • Devillez, A.; Le Coz, G.; Dominiak, S.; Dudzinski, D. (2011) Dry machining of Inconel 718, workpiece surface integrity. Journal of Materials Processing Technology 211(10): 1590–1598. doi:10.1016/j.jmatprotec.2011.04.011.
  • Ducroux, E.; Fromentin, G.; Viprey, F.; Prat, D.; D’Acunto, A. (2021) New mechanistic cutting force model for milling additive manufactured Inconel 718 considering effects of tool wear evolution and actual tool geometry. Journal of Manufacturing Processes 64: 67–80. doi:10.1016/j.jmapro.2020.12.042.
  • Ezugwu, E.O. (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. International Journal of Machine Tools and Manufacture 45(12-13): 1353–1367. doi:10.1016/J.IJMACHTOOLS.2005.02.003.
  • Fei, J.; Liu, G.; Patel, K.; Özel, T. (2020) Effects of machining parameters on finishing additively manufactured nickel-based aAlloy Inconel 625. Journal of Manufacturing and Materials Processing 4. doi:10.3390/jmmp4020032.
  • Ghani, J.A.; Che Haron, C.H.; Kasim, M.S.; Sulaiman, M.A.; Tomadi, S.H. (2016) Wear mechanism of coated and uncoated carbide cutting tool in machining process. Journal of Materials Research 31(13): 1873–1879. doi:10.1557/jmr.2015.382.
  • Ghosh, S., Rao, P.V., Chetan .(2017) Performance evaluation of deep cryogenic processed carbide inserts during dry turning of Nimonic 90 aerospace grade alloy. Tribology International 115: 397–408. doi:10.1016/J.TRIBOINT.2017.06.013.
  • Haapala, K.R.; Zhao, F.; Camelio, J.; Sutherland, J.W.; Skerlos, S.J.; Dornfeld, D.A.; Jawahir, I.S.; Clarens, A.F.; Rickli, J.L. (2013) A review of engineering research in sustainable manufacturing. Journal of Manufacturing Science and Engineering 135(4): 041013. doi:10.1115/1.4024040.
  • Halim, N.H.A.; Haron, C.H.C.; Ghani, J.A. (2022) PVD multi-coated carbide milling inserts performance: Comparison between cryogenic and dry cutting conditions. Journal of Manufacturing Processes 73: 895–902. doi:10.1016/j.jmapro.2021.11.033.
  • Holmberg, J.; Wretland, A.; Berglund, J.; Beno, T. (2020) Selection of milling strategy based on surface integrity investigations of highly deformed alloy 718 after ceramic and cemented carbide milling. Journal of Manufacturing Processes 58: 193–207. doi:10.1016/j.jmapro.2020.08.010.
  • Kaynak, Y.; Gharibi, A. (2018) Progressive tool wear in cryogenic machining: The effect of liquid nitrogen and carbon dioxide. Journal of Manufacturing and Materials Processing 2(2): 31. doi:10.3390/jmmp2020031.
  • Kaynak, Y.; Lu, T.; Jawahir, I.S. (2014) Cryogenic machining-induced surface integrity: A review and comparison with dry, MQL, and flood-cooled machining. Machining Science and Technology 18(2): 149–198. doi:10.1080/10910344.2014.897836.
  • Kaynak, Y.; Tascioglu, E. (2018) Finish machining-induced surface roughness, microhardness and XRD analysis of selective laser melted Inconel 718 alloy. Procedia CIRP 71: 500–504. doi:10.1016/J.PROCIR.2018.05.013.
  • Klocke, F.; Lung, D.; Arft, M.; Priarone, P.C.; Settineri, L. (2013) On high-speed turning of a third-generation gamma titanium aluminide. The International Journal of Advanced Manufacturing Technology 65(1-4): 155–163. doi:10.1007/s00170-012-4157-5.
  • Kumar Mishra, S.; Ghosh, S.; Aravindan, S. (2020) Machining performance evaluation of Ti6Al4V alloy with laser textured tools under MQL and nano-MQL Eenvironments. Journal of Manufacturing Processes 53: 174–189. doi:10.1016/J.JMAPRO.2020.02.014.
  • López De Lacalle, L.N.; Angulo, C.; Lamikiz, A.; Sánchez, J.A. (2006) Experimental and numerical investigation of the effect of spray cutting fluids in high speed milling. Journal of Materials Processing Technology 172(1): 11–15. doi:10.1016/J.JMATPROTEC.2005.08.014.
  • Malakizadi, A.; Hajali, T.; Schulz, F.; Cedergren, S.; Ålgårdh, J.; M'Saoubi, R.; Hryha, E.; Krajnik, P. (2021) The role of microstructural characteristics of additively manufactured alloy 718 on tool wear in machining. International Journal of Machine Tools and Manufacture 171. doi:10.1016/j.ijmachtools.2021.103814.
  • Markl, M.; Körner, C. (2016) Multiscale modeling of powder bed-based additive manufacturing. Annual Review of Materials Research46(1): 93–123. doi:10.1146/annurev-matsci-070115-032158.
  • Maruda, R.W.; Krolczyk, G.M.; Feldshtein, E.; Pusavec, F.; Szydlowski, M.; Legutko, S.; Sobczak-Kupiec, A. (2016) A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). International Journal of Machine Tools and Manufacture 100: 81–92. doi:10.1016/j.ijmachtools.2015.10.008.
  • Molaiekiya, F.; Aramesh, M.; Veldhuis, S.C. (2020) Chip formation and tribological behavior in high-speed milling of IN718 with ceramic tools. Wear 446-447: 203191. doi:10.1016/J.WEAR.2020.203191.
  • Miller, S. (1996) Advanced materials mean advanced engines. Interdisciplinary Science Reviews 21(2): 117–129. doi:10.1179/isr.1996.21.2.117.
  • Patel, K.; Fei, J.; Liu, G.; Özel, T. (2019) Milling investigations and yield strength calculations for nickel alloy Inconel 625 manufactured with laser powder bed fusion process. Production Engineering 13(6): 693–702. doi:10.1007/s11740-019-00922-2.
  • Pei, S.; Xue, F.; Zhou, Y.; Pan, C.; Jia, K. (2023) Effects of cryogenic gas jet cooling on milling surface roughness and tool life for GH4169 alloy additive manufacturing parts. Journal of Manufacturing Processes 86: 266–281. doi:10.1016/J.JMAPRO.2022.12.062.
  • Pereira, O.; Celaya, A.; Urbikaín, G.; Rodríguez, A.; Fernández-Valdivielso, A.; Noberto López de Lacalle, L. (2020) CO2 cryogenic milling of Inconel 718: Cutting forces and tool wear. Journal of Materials Research and Technology 9(4): 8459–8468. doi:10.1016/J.JMRT.2020.05.118.
  • Pereira, O.; Rodríguez, A.; Calleja-Ochoa, A.; Celaya, A.; de Lacalle, L.N.L.; Fernández-Valdivielso, A.; González, H. (2022) Simulation of cryo-cooling to improve super alloys cutting tools. International Journal of Precision Engineering and Manufacturing-Green Technology9(1): 73–82. doi:10.1007/s40684-021-00313-y.
  • Pereira, O.; Rodríguez, A.; Fernández-Abia, A.I.; Barreiro, J.; López de Lacalle, L.N. (2016) Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304. Journal of Cleaner Production 139: 440–449. doi:10.1016/J.JCLEPRO.2016.08.030.
  • Pérez-Ruiz, J.D.; de Lacalle, L.N.L.; Urbikain, G.; Pereira, O.; Martínez, S.; Bris, J. (2021) On the relationship between cutting forces and anisotropy features in the milling of LPBF Inconel 718 for near net shape parts. International Journal of Machine Tools and Manufacture 170: 103801. doi:10.1016/j.ijmachtools.2021.103801.
  • Pérez-Ruiz, J.D.; Marin, F.; Martínez, S.; Lamikiz, A.; Urbikain, G.; López de Lacalle, L.N. (2022) Stiffening near-net-shape functional parts of Inconel 718 LPBF considering material anisotropy and subsequent machining issues. Mechanical Systems and Signal Processing 168: 108675. doi:10.1016/J.YMSSP.2021.108675.
  • Periane Natarajan, S.; Vaudreuil, S.; Chibane, H.; Morandeau, A.; Xavior, M.A.; Cormier, J.; Leroy, R.; Duchosal, A. (2022) Tool life and surface integrity characteristics in milling of SLM and C&W Inconel 718 in dry and MQL condition. The International Journal of Advanced Manufacturing Technology 121(1-2): 647–659. doi:10.1007/s00170-022-09327-5.
  • Periane, S.; Duchosal, A.; Vaudreuil, S.; Chibane, H.; Morandeau, A.; Xavior, M.A.; Leroy, R. (2020) Selection of machining condition on surface integrity of additive and conventional Inconel 718. Procedia CIRP 87: 333–338. doi:10.1016/J.PROCIR.2020.02.092.
  • Pusavec, F.; Hamdi, H.; Kopac, J.; Jawahir, I.S. (2011) Surface integrity in cryogenic machining of nickel based alloy—Inconel 718. Journal of Materials Processing Technology 211(4): 773–783. doi:10.1016/J.JMATPROTEC.2010.12.013.
  • Raghavan, S.; Zhang, B.; Wang, P.; Sun, C.N.; Nai, M.L.S.; Li, T.; Wei, J. (2017), Effect of different heat treatments on the microstructure and mechanical properties in selective laser melted INCONEL 718 alloy. Materials and Manufacturing Processes 32(14): 1588–1595. doi:10.1080/10426914.2016.1257805.
  • Rotella, G.; Dillon, O.W.; Umbrello, D.; Settineri, L.; Jawahir, I.S. (2014) The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy. The International Journal of Advanced Manufacturing Technology 71(1-4): 47–55. doi:10.1007/s00170-013-5477-9.
  • Salur, E. (2022) Understandings the tribological mechanism of Inconel 718 alloy machined under different cooling/lubrication conditions. Tribology Internationall 174: 107677. doi: 10.1016/J.TRIBOINT.2022.107677.
  • Sarasua Miranda, J.A.; Cristobal, A.T.; González-Barrio, H.; Fernández-Lucio, P.; Gómez-Escudero, G.; Madariaga, A.; Arrazola, P.J. (2021) Comparative study of finishing techniques for age-hardened Inconel 718 alloy. Journal of Materials Research and Technology 15: 5623–5634. doi:10.1016/j.jmrt.2021.11.024.
  • Sen, C.; Subasi, L.; Ozaner, O.C.; Orhangul, A. (2020) The effect of milling parameters on surface properties of additively manufactured Inconel 939. Procedia CIRP 87: 31–34. doi:10.1016/J.PROCIR.2020.02.072.
  • Serrano-Munoz, I.; Fritsch, T.; Mishurova, T.; Trofimov, A.; Apel, D.; Ulbricht, A.; Kromm, A.; Hesse, R.; Evans, A.; Bruno, G. (2021) On the interplay of microstructure and residual stress in LPBF IN718. Journal of Materials Science56(9): 5845–5867. doi:10.1007/s10853-020-05553-y.
  • Shokrani, A.; Betts, J.; Jawahir, I.S. (2022) Improved performance and surface integrity in finish machining of Inconel 718 with electrically charged tungsten disulphide MQL. CIRP Annals 71(1): 109–112. doi:10.1016/J.CIRP.2022.04.068.
  • Sterle, L.; Mallipeddi, D.; Krajnik, P.; Pušavec, F. (2020) The influence of single-Channel liquid CO2 and MQL delivery on surface integrity in machining of Inconel 718. Procedia CIRP 87: 164–169. in: doi:10.1016/j.procir.2020.02.032.
  • Tamil Alagan, N.; Hoier, P.; Zeman, P.; Klement, U.; Beno, T.; Wretland, A. (2019) Effects of high-pressure cooling in the flank and rake faces of WC tool on the tool wear mechanism and process conditions in turning of alloy 718. Wear 434-435: 102922. doi:10.1016/J.WEAR.2019.05.037.
  • Taşcıoğlu, E.; Kaynak, Y.; Sharif, S.; Pıtır, F.; Suhaimi, M.A. (2022) Machining-induced surface integrity of Inconel 718 alloy fabricated by powder bed fusion additive manufacturing under various laser processing parameters. Machining Science and Technology 26(1): 49–71. doi:10.1080/10910344.2021.1998107.
  • Venugopal, K.A.; Paul, S.; Chattopadhyay, A.B. (2007) Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling. Wear 262(9-10): 1071–1078. doi:10.1016/J.WEAR.2006.11.010.
  • Yang, L.; Patel, K.V.; Jarosz, K.; Özel, T. (2020) Surface integrity induced in machining additively fabricated nickel alloy Inconel 625. Procedia CIRP 87: 351–354. doi:10.1016/J.PROCIR.2020.02.104.
  • Yang, S.; Umbrello, D.; Dillon, O.W.; Puleo, D.A.; Jawahir, I.S. (2015) Cryogenic cooling effect on surface and subsurface microstructural modifications in burnishing of Co–Cr–Mo biomaterial. Journal of Materials Processing Technology 217: 211–221. doi:10.1016/J.JMATPROTEC.2014.11.004.
  • Yao, C.F.; Jin, Q.C.; Huang, X.C.; Wu, D.X.; Ren, J.X.; Zhang, D.H. (2013) Research on surface integrity of grinding inconel718. The International Journal of Advanced Manufacturing Technology 65(5–8): 1019–1030. doi:10.1007/s00170-012-4236-7.
  • Zhang, S.; Li, J.F.; Wang, Y.W. (2012) Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. Journal of Cleaner Production 32: 81–87. doi:10.1016/J.JCLEPRO.2012.03.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.