969
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparison between methods to estimate bicep femoris fascicle length from three estimation equations using a 10 cm ultrasound probe

, &

References

  • Askling, C., Karlsson, J., & Thorstensson, A. (2003). Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scandinavian Journal of Medicine and Science in Sports, 13(4), 244–250. https://doi.org/10.1034/j.1600-0838.2003.00312.x
  • Behan, F. P., Vermeulen, R., Smith, T., Arnaiz, J., Whiteley, R., Timmins, R. G., & Opar, D. A. (2018). Poor agreement between ultrasound and inbuilt diffusion tensor MRI measures of biceps femoris long head fascicle length. Translational Sports Medicine, 2(2), 58–63 doi:https://doi.org/10.1002/tsm2.58.
  • Bland, J. M., & Altman, D. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327(8476), 307–310. https://doi.org/10.1016/S0140-6736(86)90837-8
  • Blazevich, A. J., Gill, N. D., & Zhou, S. (2006). Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. Journal of Anatomy, 209(3), 289–310. https://doi.org/10.1111/j.1469-7580.2006.00619.x
  • De Oliveira, V. B., Carneiro, S. P., & De Oliveira, L. F. (2016). Reliability of biceps femoris and semitendinosus muscle architecture measurements obtained with ultrasonography. Revista Brasileira de Engenharia Biomedica, 32(4), 365–371. https://doi.org/10.1590/2446-4740.04115
  • Dow, C. L., Timmins, R. G., Ruddy, J., Williams, M. D., Maniar, N., Hickey, J., Bourne, M. N., & Opar, D. A. (2021). Prediction of hamstring injuries in Australian Football using biceps femoris architectural risk factors derived from soccer. American Journal of Sports Medicine, 49(13), 3687–3695. https://doi.org/10.1177/03635465211041686
  • Ekstrand, J., Walden, M., & Hagglund, M. (2016). Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: A 13-year longitudinal analysis of the UEFA Elite Club injury study. British Journal of Sports Medicine, 50(12), 731–737 doi:http://dx.doi.org/10.1136/bjsports-2015-095359.
  • Franchi, M. V., Fitze, D. P., Raiteri, B. J., Hahn, D., & Spörri, J. (2019). Ultrasound-derived biceps femoris long-head fascicle length: Extrapolation pitfalls. Medicine & Science in Sports & Exercise, 52(1), 233–243. https://doi.org/10.1249/MSS.0000000000002123
  • Freitas, S. R., Marmeleira, J., Valamatos, J., Blazevich, A., & Mil-Homens, P. (2018). Ultrasonographic measurement of the biceps femoris long-head muscle architecture. Journal of Ultrasound in Medicine, 37(4), 977–986. https://doi.org/10.1002/jum.14436
  • Guilhem, G., Cornu, C., Guével, A., & Guevel, A. (2011). Muscle architecture and EMG activity changes during isotonic and isokinetic eccentric exercises. European Journal of Applied Physiology, 111(11), 2723–2733 doi:https://doi.org/10.1007/s00421-011-1894-3.
  • Hopkins, W. (2002). A new view of statistics: A scale of magnitudes for effect statistics. Sportscience.
  • Kawakami, Y., Abe, T., & Fukunaga, T. (1993). Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. Journal of Applied Physiology, 74(6), 2740–2744. https://doi.org/10.1152/jappl.1993.74.6.2740
  • Kellis, E., Galanis, N., Natsis, K., & Kapetanos, G. (2009). Validity of architectural properties of the hamstring muscles: Correlation of ultrasound findings with cadaveric dissection. Journal of Biomechanics, 42(15), 2549–2554. https://doi.org/10.1016/j.jbiomech.2009.07.011
  • Koulouris, G., & Connell, D. (2005). Hamstring muscle complex- An imaging review. Radiographics, 25(3), 571–586. https://doi.org/10.1148/rg.253045711
  • Lieber, R. L., & Ward, S. R. (2011). Skeletal muscle design to meet functional demands. Philosophical Transactions of the Royal Society London Series B, Biological Sciences, 366(1570), 1466–1476. https://doi.org/10.1098/rstb.2010.0316
  • Morin, J. B., Gimenez, P., Edouard, P., Arnal, P., Jimenez-Reyes, P., Samozino, P., Brughelli, M., & Mendiguchia, J. (2015). Sprint acceleration mechanics: The major role of hamstrings in horizontal force production. Frontiers in Physiology, 6(404), 1–14. https://doi.org/10.3389/fphys.2015.00404
  • Opar, D. A., Drezner, J., Shield, A., Williams, M., Webner, D., Sennett, B., Kapur, R., Cohen, M., Ulager, J., Cafengiu, A., & Cronholm, P. F. (2014). Acute hamstring strain injury in track-and-field athletes: A 3-year observational study at the Penn Relay Carnival. Scandinavian Journal of Medicine and Science in Sports, 24(4), e254–259. https://doi.org/10.1111/sms.12159
  • Opar, D. A., Williams, M., & Shield, A. (2012). Hamstring strain injuries: Factors that lead to injury and re-injury. Sports Medicine, 42(3), 209–226. https://doi.org/10.2165/11594800-000000000-00000
  • Orchard, J., Kountouris, A., & Sims, K. (2017). Risk factors for hamstring injuries in Australian male professional cricket players. Journal of Sport and Health Science, 6(3), 271–274. https://doi.org/10.1016/j.jshs.2017.05.004
  • Pimenta, R., Blazevich, A. J., & Freitas, S. R. (2018). Biceps femoris long-head architecture assessed using different sonographic techniques. Medicine and Science in Sports and Exerc, 50(12), 2584–2594 doi:10.1249/MSS.0000000000001731.
  • Ribeiro Alvares, J. B., Dornelles, M. P., Fritsch, C. G., De Lima-e-silva, F. X., Medeiros, T. M., Severo-Silveira, L., Marques, B. V., & Baroni, M. (2019). Prevalence of hamstring strain injury risk factors in professional and under 20 male football (Soccer) players. Journal of Sport Rehabilitation, 29(3), 339–345. https://doi.org/10.1123/jsr.2018-0084
  • Ruddy, J. D., Shield, A. J., Maniar, N., Williams, M. D., Duhig, S., Timmins, R. G., Hickey, J., Bourne, M. N., & Opar, D. A. (2018). Predictive modeling of hamstring strain injuries in Elite Australian Footballers. Medicine and Science in Sports Exercise, 50(5), 906–914. https://doi.org/10.1249/MSS.0000000000001527
  • Schache, A. G., Dorn, T. W., Wrigley, T. V., Brown, N. A., & Pandy, M. G. (2013). Stretch and activation of the human biarticular hamstrings across a range of running speeds. European Journal of Applied Physiology, 113(11), 2813–2828. https://doi.org/10.1007/s00421-013-2713-9
  • Timmins, R. G., Bourne, M. N., Shield, A. J., Williams, M. D., Lorenzen, C., & Opar, D. A. (2016a). Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): A prospective cohort study. British Journal of Sports Medicine, 50(24), 1524–1535. https://doi.org/10.1136/bjsports-2015-095362
  • Timmins, R. G., Shield, A. J., Williams, M. D., Lorenzen, C., & Opar, D. A. (2015). Biceps femoris long head architecture: A reliability and retrospective injury study. Medicine and Science in Sports and Exercise, 47(5), 905–913. https://doi.org/10.1249/MSS.0000000000000507
  • Timmins, R. G., Shield, A. J., Williams, M. D., Lorenzen, C., & Opar, D. A. (2016b). Architectural adaptations of muscle to training and injury: A narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. British Journal of Sports Medicine, 50(23), 1467–1472. https://doi.org/10.1136/bjsports-2015-094881
  • Woods, C., Hawkins, R. D., Maltby, S., Hulse, M., Thomas, A., Hodson, A., & Football Association Medical Research, P. (2004). The Football Association Medical Research Programme: An audit of injuries in professional football–analysis of hamstring injuries. British Journal of Sports Medicine, 38(1), 36–41 doi:http://dx.doi.org/10.1136/bjsm.2002.002352.