655
Views
26
CrossRef citations to date
0
Altmetric
Reviews

Microbial and Enzymatic Biotransformations of Asphaltenes

, &

REFERENCES

  • Akbarzadeh, K., Hammami, A., Kharrat, A., Zhang, D., Allenson, S., Creek, J., Kabir, S., Jamaluddin, A., Marshall, A.G.P. Rodgers, R.P., Mullins, O.C., and Solbakken, T. (2007). Asphaltenes-problematic but rich in potential. Oilfield Rev. 19:22–43.
  • Ali, H.R., El-Gendy, N.S., Moustafa, Y.M., Mohamed, I., Roushdy, M.I., and Hashem, A.I. (2012). Degradation of asphaltenic fraction by locally isolated halotolerant bacterial strains. ISRN Soil Sci. ID 435485.
  • Ali, H.R., Ismail, D.A., and El-Gendy, N.S. (2014). The biotreatment of oil-polluted seawater by biosurfactant producer halotolerant Pseudomonas aeruginosa Asph2. Energy Sources, Part A 36:1429–1436.
  • Ancheyta, J., Centeno, G., Trejo, F., Marroquin, G., Garcia, J.A., Tenorio, E., and Torres, A. (2002). Extraction and characterization of asphaltenes from different crude oils and solvents. Energy Fuels 16:1121–1127.
  • Andrews, A.B., Guerra, R.E., Mullins, O.C., and Sen, P.N. (2006). Diffusivity of asphaltene molecules by fluorescence correlation spectroscopy. J. Phys. Chem. A 110:8093–8097.
  • Ayala, M., Hernández-López, E.L., Perezgasga, L., and Vazquez-Duhalt, R. (2012). Reduced coke formation and aromaticity due to chloroperoxidase catalyzed transformation of asphaltenes from Maya crude oil. Fuel 92:245–249.
  • Bertrand, J.C., Rambeloarisoa, E., Rontani, J.F., Giusti, G., and Mattei, G. (1983). Microbial degradation of crude oil in sea water in continuos culture. Biotechnol. Lett. 5:567–572.
  • Bezalel, L., Hadar, Y., and Cerniglia, C.E. (1996). Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 62:292–295.
  • Bezalel, L., Hadar, Y., and Cerniglia, C.E. (1996). Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 62:2554–2559.
  • Boduszynski, M.M. (1981). Asphaltenes in petroleum asphalts: Composition and formation. In: Chemistry of asphaltenes, Bunger J.W., Li, N.C. (Eds.). Washington, DC: American Chemical Society.
  • Brenner, K., You, L., and Arnold, F.H. (2008). Engineering microbial consortia: A new frontier in synthetic biology. Trends Biotechnol. 26:483–489.
  • Bublitz, F., Guenther, T., and Fritsche, W. (1994). Screening of fungi for the biological modification of hard coal and coal derivatives. Fuel Process. Technol. 40:347–354.
  • Cerniglia, C.E. (1997). Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J. Ind. Microbiol. Biotechnol. 19:324–333.
  • Cerniglia, C.E., and Sutherland, J.B. (2010). Degradation of polycyclic aromatic hydrocarbons by fungi. In: Handbook of hydrocarbon and lipid microbiology, Timmis, K.N. (Ed.): Berlin: Springer-Verlag; Chapter 34, pp. 2079–2110.
  • Cerniglia, C.E., and Yang, S.K. (1984). Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 47:119–124.
  • Castelli, F., Librando, V., and Sarpietro, M.G. (2002). Calorimetric approach of the interaction and absorption of polycyclic aromatic hydrocarbons with model membranes. Environ. Sci. Technol. 36:2717–2723.
  • Da Silva, M., Esposito, E., Joanna, D.M. C., Canhos, V.P., and Cerniglia, C.E. (2004). Metabolism of aromatic hydrocarbons by the filamentous fungus Cyclothyrium sp. Chemosphere 57:943–952.
  • Das, N., and Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Res. Int. 2011:1–13.
  • Fayeulle, A., Veignie, E., Slomianny, C., Dewailly, E., Munch, J.-C., and Rafin, C. (2014). Energy-dependent uptake of benzo[a]pyrene and its cytoskeleton-dependent intracellular transport by the telluric fungus Fusarium solani. Environ. Sci. Pollut. Res.; 21:3515–3523.
  • Fedorak, P.M., Semple, K.M., Vazquez-Duhalt, R., and Westlake, D.W. S. (1993). Chloroperoxidase-mediated modifications of petroporphyrins and asphaltenes. Enzyme Microb. Technol. 15:429–437.
  • Freed, D.E., Lisitza, N.V., Sen, P.N., and Song, Y.-Q. (2007). Molecular composition and dynamics of oils from difussion measurements. In: Asphaltenes, heavy oils and petroleomics, Mullins, O.C., Sheu, E.Y., Hammami, A., Marshal, A.G. (Eds.). New York: Springer.
  • Garcia-Arellano, H., Buenrostro-Gonzalez, E., and Vazquez-Duhalt, R. (2004). Biocatalytic transformation of petroporphyrins by chemical modified cytochrome c. Biotechnol. Bioeng. 85:790–798.
  • Groenzin, H., and Mullins, O.C. (1999). Asphaltene molecular size and structure. J. Phys. Chem. A 103:11237–11245.
  • Groenzin, H., and Mullins, O.C. (2000). Molecular size and structure of asphaltenes from various sources. Energy Fuels 14:677–684.
  • Harms, H., Schlosser, D., and Wick, L.Y. (2011). Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol. 9:177–192.
  • Haritash, A.K., and Kaushik, C.P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 169:1–15.
  • Hofrichter, M., Bublitz, F., and Fritsche, W. (1997). Fungal attack on coal: I. Modification of hard coal by fungi. Fuel Proc. Technol. 52:43–53.
  • Hortal, A.R., Martínez-Haya, B., Lobato, M.D., Pedrosa, J.M., and Lago, S. (2006). On the determination of molecular weight distributions of asphaltenes and their aggregates in laser desorption ionization experiments. J. Mass Spectrom. 41:960–968.
  • Indo, K., Ratulowski, J., Dindoruk, B., Gao, J., Zuo, J.Y., and Mullins, O.C. (2009). Asphaltene nanoaggregates measured in a live crude oil by centrifugation. Energy Fuels 23:4460–4469.
  • Jahromi, H., Fazaelipoor, M.H., Ayatollahi, S., and Niazi, A. (2014). Asphaltenes biodegradation under shaking and static conditions. Fuel 117:230–225.
  • Jauregui, J., Valderrama, B., Albores, A., and Vazquez-Duhalt, R. (2003). Microsomal transformation of organophosphorus pesticides by white rot fungi. Biodegradation 14:397–406.
  • Kasai, N., Ikushiro, S., Shinkyo, R., Yasuda, K., Hirosue, S., Arisawa, A., Ichinose, H., Wariishi, H., and Sakaki, T. (2010). Metabolism of mono- and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450. Appl. Microbiol. Biotechnol. 86:773–780.
  • Lacotte, D.J., Mille, G., Acquaviva, M., and Bertrand, J.C. (1996). Arabian light asphaltene biotransformation with n-alkanes as co-substrates. Chemosphere 32:1755–1761.
  • Lavania, M., Cheema, S., Sarma, P.M., MandalA.K., and Lal, B. (2012). Biodegradation of asphalt by Garciaella petrolearia TERIG02 for viscosity reduction of heavy oil. Biodegradation 23:15–24.
  • Leahy, J.G., and Colwell, R.R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54:305–315.
  • Luo, P., Wang, X., and Gu, Y. (2010). Characterization of asphaltenes precipitated with three light alkanes under different experimental conditions. Fluid Phase Equilib. 291:103–110.
  • Margesin, R., and Schiner, F. (2001). Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Environ. Microbiol. 56:650–663.
  • Masaphy, S., Levanon, D., Henis, Y., Venkateswarlu, K., and Kelly, S.L. (1996). Evidence for cytochrome P450 and P450-mediated benzo(a)pyrene hydroxylation in the white rot fungus Phanerochaete chrysosporium. FEMS Microbiol. Lett. 135:51–55.
  • Merdrignac, I., Desmazières, B., Terrier, P., Delobel, A., and Laprévote, O. (2004). Analysis of raw and hydrotreated asphaltenes using off-line and on-line SEC/MS Coupling. International Conference on Heavy Organics Deposition, Los Cabos, Baja, México, November 14–19.
  • Mogollón, L., Rodríguez, R., Larrota, W., Ortiz, C., and Torres, R. (1998). Biocatalytic removal of nickel and vanadium from petroporphyrins and asphaltenes. Appl. Biochem. Biotechnol. 70–72:765–777.
  • Mullins, O.C. (2011). The asphaltenes. Ann. Rev. Anal. Chem. 4:393–418.
  • Pendrys, J.P. (1989). Biodegradation of asphalt cement-20 by aerobic bacteria. Appl. Environ. Microbiol. 55:1357–1362.
  • Pineda-Flores, G., Boll-Argüello, G., Lira-Galeana, C., and Mesta-Howard, A.M. (2004). A microbial consortium isolated from a crude oil sample that uses asphaltenes as a carbon and energy source. Biodegradation 15:145–151.
  • Qian, K., Edwards, K.E., Siskin, M., Olmstead, W.N., Mennito, A.S., Dechert, G.J., and Hoosain, N.E. (2007). Desorption and ionization of heavy petroleum molecules and measurement of molecular weight distributions. Energy Fuels 21:1042–1047.
  • Rodgers, R.P., and Marshall, A.G. (2007). Petroleomics: Advanced characterization of petroleum-derived materials by fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). In: Asphaltenes, heavy oils and petroleomics, Mullins, O.C., Sheu, E.Y., Hammami, A., Marshal, A.G. (Eds.). New York: Springer.
  • Rontani, J.F., Bosser-Joulak, F., Rambeloarisoa, E., Bertrand, J.C., Giusti, G., and Faure, R. (1985). Analytical study of Asyhart crude oil biodegradation. Chemosphere 14:1413–1422.
  • Scotti, R., and Montanari, L. (1998). Molecular structure and intermolecular interaction of asphaltenes by FT-IR, NMR, EPR. In: Structures and dynamics of asphaltenes, Mullins, O.C., Sheu, E.Y. (Eds.). New York: Springer.
  • Speight, J.G. (1999). The chemistry and technology of petroleum (3rd ed.). New York: Marcel Dekker.
  • Speight, J.G., and Moschopedis, S.E. (1982). On the molecular nature of petroleum asphaltenes. In: Chemistry of asphaltenes, Bunger, J., Li, C.N. (Eds.). Washington, DC: American Chemical Society.
  • Strausz, O.P., Mojelsky, T.W., and Lown, E.M. (1992). The molecular structure of asphaltene: an unfolding story. Fuel 71:1355–1363.
  • Subramanian, V., and Yadav, J.S. (2009). Role of P450 monooxygenases in the degradation of the endocrine-disrupting chemical nonylphenol by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 75:5570–5580.
  • Syed, K., Doddapaneni, H., Subramanian, V., Lam, Y.W., and Yadav, J.S. (2010). Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochem. Biophys. Res. Comm. 399:492–497.
  • Tavassoli, T., Mousavi, S.M., Shojaosadati, S.A., and Salehizadeh, H. (2012). Asphaltene biodegradation using microorganisms isolated from oil samples. Fuel 93:142–148.
  • Thouand, G., Bauda, P., Oudot, J., Kirsch, G., Sutton, C., and Vidalie, J.F. (1999). Laboratory evaluation of crude oil biodegradation with commercial or natural microbial inocula. Can. J. Microbiol. 45:106–115.
  • Tinoco, R., and Vazquez-Duhalt, R. (1998). Chemical modification of cytochrome c improves their catalytic properties in oxidation of polycyclic aromatic hydrocarbons. Enzyme Microb. Technol. 22:8–12.
  • Ullrich, R., and Hofrichter, M. (2007). Enzymatic hydroxylation of aromatic compounds. Cell Mol. Life Sci. 64:271–293.
  • Uribe-Alvarez, C., Ayala, M., Perezgasga, L., Naranjo, L., Urbina, H., and Vazquez-Duhalt, R. (2011). First evidence of mineralization of petroleum asphaltenes by a strain of Neosartorya fischeri. Microb. Biotechnol. 4:663–672.
  • Vazquez-Duhalt, R. (1998). Hemoproteins as biocatalyst for the oxidation of polycyclic aromatic hydrocarbons. In: Advances in bioprocess engineering II, Galindo, E., Ramírez, O.T. (Eds.). Amsterdam: Kluwer Academic Publishers; pp. 183–207.
  • Verdin, A., Sahraoui, A.L.-H., Newsam, R., Robinson, G., Durand, R. (2005). Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles. Environ. Pollut. 133:283–291.
  • Walker, J.D., Colwell, R.R., and Petrakis, L. (1976). Biodegradation rates of components of petroleum. Can. J. Microbiol. 22:1209–1213.
  • Wargadalam, V.J., Norinagak, K., and Iino, M. (2002). Size and shape of a coal asphaltene studied by viscosity and diffusion coefficient measurements. Fuel 81:1403–1407.
  • Yanto, D.H. Y., and Tachibana, S. (2013). Biodegradation of petroleum hydrocarbons by a newly isolated Pestalotiopsis sp NG007. Int. Biodet. Biodegrad. 85:438–450.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.