163
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Modelling of gas to hydrate conversion for promoting CO2 capture processes in the oil and gas industry

, , &

References

  • Babaee, S., Hashemi, H., Mohammadi, A. H., Naidoo, P., and Ramjugernath, D. (2014). Experimental measurement and thermodynamic modeling of hydrate dissociation conditions for the argon + TBAB + water system. J. Chem. Eng. Data 59:3900–3906. doi: 10.1021/je500791e
  • Davidson, D. W., El-Defrawy, M. K., Fuglem, M. O., and Judge, A. S. (1978). Natural gas hydrates in northern Canada. 3rd Int. Conf. Permafrost 1:937–943.
  • Deschamps, J., and Dalmazzone, D. (2009). Dissociation enthalpies and phase equilibrium for TBAB semi-clathrate hydrates of N2, CO2, N2 + CO2 and CH4 + CO2. J. Therm. Anal. Calorim. 98:113–118. doi: 10.1007/s10973-009–0399-3
  • Eslamimanesh, A., Gharagheizi, F., Mohammadi, A. H., and Richon, D. (2011). Phase Equilibrium Modeling of Structure H Clathrate hydrates of methane + water “insoluble” hydrocarbon promoter using QSPR molecular approach. J. Chem. Eng. Data 56:3775–3793. doi: 10.1021/je200444f
  • Esteki, M., Rezayat, M., Ghaziaskar, H. S., and Khayamian, T. (2010). Application of QSPR for prediction of percent conversion of esterification reactions in supercritical carbon dioxide using least squares support vector regression. J. Supercrit. Fluids 54:222–230. doi: http://dx.doi.org/10.1016/j.supflu.2010.04.007
  • Fournaison, L., Delahaye, A., Chatti, I., and Petitet, J.-P. (2004). CO2 hydrates in refrigeration processes. Ind. Eng. Chem. Res. 43:6521–6526. doi: 10.1021/ie030861r
  • Gharagheizi, F., Ilani-Kashkouli, P., Sattari, M., Mohammadi, A. H., Ramjugernath, D., and Richon, D. (2014). Development of a LSSVM-GC model for estimating the electrical conductivity of ionic liquids. Chem. Eng. Res. Des. 92:66–79. doi: http://dx.doi.org/10.1016/j.cherd.2013.06.015
  • Javanmardi, J., and Moshfeghian, M. (2003). Energy consumption and economic evaluation of water desalination by hydrate phenomenon. Appl. Therm. Eng. 23:845–857. doi: http://dx.doi.org/10.1016/S1359-4311(03)00023-1
  • Kang, S.-P., and Lee, H. (2000). Recovery of CO2 from flue gas using gas hydrate:  thermodynamic verification through phase equilibrium measurements. Environ. Sci. Technol. 34:4397–4400. doi: 10.1021/es001148l
  • Kennedy, J., and Eberhart, R. (1995). Particle swarm optimization. IEEE Int. Conf. Neural Networks 4:1942–1948.
  • Kerr, R. A. (2004). Energy. Gas hydrate resource: smaller but sooner. Science 303:946–947. doi: 10.1126/science.303.5660.946
  • Kvenvolden, K. A. (1988). Methane hydrate: a major reservoir of carbon in the shallow geosphere? Chem. Geol. 71:41–51. doi: http://dx.doi.org/10.1016/0009-2541(88)90104-0
  • Lee, H. J., Lee, J. D., Linga, P., Englezos, P., Kim, Y. S., Lee, M. S., and Kim, Y. D. (2010). Gas hydrate formation process for pre-combustion capture of carbon dioxide. Energy 35:2729–2733. doi: http://dx.doi.org/10.1016/j.energy.2009.05.026
  • Lee, J.-W., Lee, J., and Kang, S.-P. (2013). 13C NMR spectroscopies and formation kinetics of gas hydrates in the presence of monoethylene glycol as an inhibitor. Chem. Eng. Sci. 104:755–759. doi: http://dx.doi.org/10.1016/j.ces.2013.10.007
  • Li, S., Fan, S., Wang, J., Lang, X., and Wang, Y. (2010). Semiclathrate hydrate phase equilibria for CO2 in the presence of tetra-n-butyl ammonium halide (bromide, chloride, or fluoride). J. Chem. Eng. Data 55:3212–3215. doi: 10.1021/je100059h
  • Ma, Q.-L., Chen, G.-J., and Zhang, L.-W. (2009). Experimental and modeling study on gas hydrate formation kinetics of (methane + ethylene + tetrahydrofuran + H2O). J. Chem. Eng. Data 54:2474–2478. doi: 10.1021/je900017k
  • Makino, T., Yamamoto, T., Nagata, K., Sakamoto, H., Hashimoto, S., Sugahara, T., and Ohgaki, K. (2009). Thermodynamic stabilities of tetra-n-butyl ammonium chloride + H2, N2, CH4, CO2, or C2H6 semiclathrate hydrate systems. J. Chem. Eng. Data 55:839–841. doi: 10.1021/je9004883
  • Martín, Á., and Peters, C. J. (2009). Thermodynamic modeling of promoted structure II clathrate hydrates of hydrogen. J. Phys. Chem. B 113:7548–7557. doi: 10.1021/jp807367j
  • Mayoufi, N., Dalmazzone, D., Fürst, W., Delahaye, A., and Fournaison, L. (2009). CO2 Enclathration in hydrates of peralkyl-(ammonium/phosphonium) salts: stability conditions and dissociation enthalpies. J. Chem. Eng. Data 55:1271–1275. doi: 10.1021/je9006212
  • Mesbah, M., Soroush, E., Azari, V., Lee, M., Bahadori, A., and Habibnia, S. (2015). Vapor liquid equilibrium prediction of carbon dioxide and hydrocarbon systems using LSSVM algorithm. J. Supercrit. Fluids 97:256–267. doi: http://dx.doi.org/10.1016/j.supflu.2014.12.011
  • Mohammadi, A., Eslamimanesh, A., Belandria, V., and Richon, D. (2011). Phase equilibria of semiclathrate hydrates of CO2, N2, CH4, or H2 + tetra-n-butylammonium bromide aqueous solution. J. Chem. Eng. Data 56:3855–3865. doi: 10.1021/je2005159
  • Mohammadi, A., Manteghian, M., and Mohammadi, A. H. (2013). Dissociation data of semiclathrate hydrates for the systems of tetra-n-butylammonium fluoride (TBAF) + methane + water, TBAF + carbon dioxide + water, and TBAF + nitrogen + water. J. Chem. Eng. Data 58:3545–3550. doi: 10.1021/je4008519
  • Mohammadi, A., Manteghian, M., and Mohammadi, A. H. (2014). Phase equilibria of semiclathrate hydrates for methane, tetra n-butylammonium chloride (TBAC), carbon dioxide, TBAC, and nitrogen, TBAC aqueous solution systems. Fluid Phase Equilib. 381:102–107. doi: http://dx.doi.org/10.1016/j.fluid.2014.08.012
  • Ng, H.-J., and Robinson, D. B. (1985). Hydrate formation in systems containing methane, ethane, propane, carbon dioxide or hydrogen sulfide in the presence of methanol. Fluid Phase Equilib. 21:145–155. doi: http://dx.doi.org/10.1016/0378–3812(85)90065-2
  • Nogami, T., Oya, N., Ishida, H., and Matsumoto, H. (2008). Development of natural gas ocean transportation chain by means of natural gas hydrate (NGH). Proc. 6th Int. Conf. Gas Hydrates 40:1–9.
  • Ogawa, T., Ito, T., Watanabe, K., Tahara, K.-I., Hiraoka, R., Ochiai, J.-I.,... Mori, Y. H. (2006). Development of a novel hydrate-based refrigeration system: a preliminary overview. Appl. Therm. Eng. 26:2157–2167. doi: http://dx.doi.org/10.1016/j.applthermaleng.2006.04.003
  • Parrish, W. R., and Prausnitz, J. M. (1972). Dissociation pressures of gas hydrates formed by gas mixtures. Ind. Eng. Chem. Process Des. Dev. 11:26–35. doi: 10.1021/i260041a006
  • Ricaurte, M., Torré, J.-P., Asbai, A., Broseta, D., and Dicharry, C. (2012). Experimental data, modeling, and correlation of carbon dioxide solubility in aqueous solutions containing low concentrations of clathrate hydrate promoters: application to CO2–CH4 gas mixtures. Ind. Eng. Chem. Res. 51:3157–3169. doi: 10.1021/ie2023993
  • Shi, L.-L., Liang, D.-Q., and Wu, N.-Y. (2014). Phase equilibrium data of the double tetrabutylammonium chloride plus carbon dioxide or nitrogen semiclathrate hydrate. J. Chem. Eng. Data 59:2320–2323. doi: 10.1021/je500445w
  • Sloan, E. D., and Koh, C. A. (2008). Clathrate hydrates of natural gases (3rd ed.). Boca Raton, FL: Taylor and Francis.
  • Sun, Z.-G., Jiao, L.-J., Zhao, Z.-G., Wang, G.-L., and Huang, H.-F. (2014). Phase equilibrium conditions of semi-calthrate hydrates of (tetra-n-butyl ammonium chlorideand#xa0;+and#xa0;carbon dioxide). J. Chem. Thermodynam. 75:116–118. doi: http://dx.doi.org/10.1016/j.jct.2014.02.020
  • Sun, Z.-G., and Liu, C.-G. (2012). Equilibrium conditions of methane in semiclathrate hydrates of tetra-n-butylammonium chloride. J. Chem. Eng. Data 57:978–981. doi: 10.1021/je201264g
  • Xu, Z.-C., and Liang, D.-Q. (2014). Equilibrium data of (tert-butylamine + CO2) and (tert-butylamine + N2) clathrate hydrates. J. Chem. Eng. Data 59:476–480. doi: 10.1021/je400922j
  • Ye, N., and Zhang, P. (2012). Equilibrium data and morphology of tetra-n-butyl ammonium bromide semiclathrate hydrate with carbon dioxide. J. Chem. Eng. Data 57:1557–1562. doi: 10.1021/je3001443
  • Ye, N., and Zhang, P. (2014). Phase equilibrium and morphology characteristics of hydrates formed by tetra-n-butyl ammonium chloride and tetra-n-butyl phosphonium chloride with and without CO2. Fluid Phase Equilib. 361:208–214. doi: http://dx.doi.org/10.1016/j.fluid.2013.10.055
  • Zhang, B., and Wu, Q. (2010). Thermodynamic promotion of tetrahydrofuran on methane separation from low-concentration coal mine methane based on hydrate. Energy Fuels 24:2530–2535. doi: 10.1021/ef901446n

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.