189
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Modelling of methane hydrate formation pressure in the presence of different inhibitors

, , &

References

  • Afzal, Waheed, Amir H Mohammadi, and Dominique Richon. (2008). Experimental measurements and predictions of dissociation conditions for methane, ethane, propane, and carbon dioxide simple hydrates in the presence of diethylene glycol aqueous solutions. J. Chem. Eng. Data 53(3):663–666.
  • Babakhani, Saheb Maghsoodloo, Mahmoud Bahmani, Jafar Shariati, Kiumars Badr, and Yahya Balouchi. (2015). Comparing the capability of artificial neural network (ANN) and CSMHYD program for predicting of hydrate formation pressure in binary mixtures. J. Pet. Sci. Eng. 136:78–87.
  • Baghban, Alireza, Peyman Abbasi, Peyman Rostami, Meysam Bahadori, Zainal Ahmad, Tomoaki Kashiwao, and Alireza Bahadori. (2016a). Estimation of oil and gas properties in petroleum production and processing operations using rigorous model. Pet. Sci. Technol. 34(13):1129–1136. doi: 10.1080/10916466.2016.1183028.
  • Baghban, Alireza, Mohammad Ali Ahmadi, Behzad Pouladi, and Behnam Amanna. (2015a). Phase equilibrium modeling of semi-clathrate hydrates of seven commonly gases in the presence of TBAB ionic liquid promoter based on a low parameter connectionist technique. J. Supercrit. Fluids 101:184–192.
  • Baghban, Alireza, Mohammad Ali Ahmadi, and Bahram Hashemi Shahraki. (2015b). Prediction carbon dioxide solubility in presence of various ionic liquids using computational intelligence approaches. J. Supercrit. Fluids 98:50–64.
  • Baghban, Alireza, Mohammad Bahadori, Tomoaki Kashiwao, and Alireza Bahadori. (2016b). Modelling of gas to hydrate conversion for promoting CO2 capture processes in the oil and gas industry. Pet. Sci. Technol. 34(7):642–651.
  • Baghban, Alireza, Mohammad Bahadori, Jake Rozyn, Ali Abbas, Alireza Bahadori, and Arash Rahimali. (2015c). Estimation of air dew point temperature using computational intelligence schemes. Appl. Therm. Eng.
  • Baghban, Alireza, Tomoaki Kashiwao, Meysam Bahadori, Zainal Ahmad, and Alireza Bahadori. (2016c). Estimation of natural gases water content using adaptive neuro-fuzzy inference system. Pet. Sci. Technol. 34(10):891–897. doi: 10.1080/10916466.2016.1176039.
  • Basak, Debasish, Srimanta Pal, and Dipak Chandra Patranabis. (2007). Support vector regression. Neural Inf. Process. Lett. Rev. 11(10):203–224.
  • Berge, B. K. (1986). Hydrate predictions on a microcomputer. Paper presented at the Petroleum Industry Application of Microcomputers.
  • Cortes, Corinna, and Vladimir Vapnik. (1995). Support-vector networks. Mach. Learn. 20(3):273–297.
  • Englezos, Peter. (1993). Clathrate hydrates. Ind. Eng. Chem. Res. 32(7):1251–1274.
  • Gunn, Steve R. (1998). Support vector machines for classification and regression. ISIS technical report 14.
  • Haghighi, Hooman, Antonin Chapoy, Rod Burgess, Saeid Mazloum, and Bahman Tohidi. (2009). Phase equilibria for petroleum reservoir fluids containing water and aqueous methanol solutions: Experimental measurements and modelling using the CPA equation of state. Fluid Phase Equilib. 278(1):109–116.
  • Hammerschmidt, E. G. (1934). Formation of gas hydrates in natural gas transmission lines. Ind. Eng. Chem. 26(8):851–855.
  • Javanmardi, Jafar, Saeedeh Babaee, Ali Eslamimanesh, and Amir H Mohammadi. (2012). Experimental measurements and predictions of gas hydrate dissociation conditions in the presence of methanol and ethane-1, 2-diol aqueous solutions. J. Chem. Eng. Data 57(5):1474–1479.
  • Javanmardi, Jafar, Mahmood Moshfeghian, and Robert N Maddox. (2001). An accurate model for prediction of gas hydrate formation conditions in mixtures of aqueous electrolyte solutions and alcohol. Can. J. Chem. Eng. 79(3):367–373.
  • Mahmoodaghdam, Elham, and Raj Bishnoi, P. (2002). Equilibrium data for methane, ethane, and propane incipient hydrate formation in aqueous solutions of ethylene glycol and diethylene glycol. J. Chem. Eng. Data 47(2):278–281.
  • Masoudi, Rahim, and Bahman Tohidi. (2005). Estimating the hydrate stability zone in the presence of salts and/or organic inhibitors using water partial pressure. J. Pet. Sci. Eng. 46(1):23–36.
  • Mohammadi, Amir H., and Dominique Richon. (2009). Phase equilibria of methane hydrates in the presence of methanol and/or ethylene glycol aqueous solutions. Ind. Eng. Chem. Res. 49(2):925–928.
  • Mohammadi, Amir H., and Dominique Richon. (2011). Gas hydrate phase equilibrium in methane+ ethylene glycol, diethylene glycol, or triethylene glycol+ water system. J. Chem. Eng. Data 56(12):4544–4548.
  • Mohammadi, Amir H., and Bahman Tohidi. (2005). A novel predictive technique for estimating the hydrate inhibition effects of single and mixed thermodynamic inhibitors. Can. J. Chem. Eng. 83(6):951–961.
  • Motiee, M. (1991). Estimate possibility of hydrates. Hydrocarbon processing 70(7):98–99.
  • Najibi, Hesam, Kamalodin Momeni, and Mohammad T. Sadeghi. (2015). Theoretical and experimental study of phase equilibrium of semi-clathrate hydrates of methane + tetra-n-butyl-ammonium bromide aqueous solution. J. Nat. Gas Sci. Eng. 27, Part 3:1771–1779. doi: http://dx.doi.org/10.1016/j.jngse.2015.11.002.
  • Nasrifar, Kh., Moshfeghian, M., and Maddox, R. N. (1998). Prediction of equilibrium conditions for gas hydrate formation in the mixtures of both electrolytes and alcohol. Fluid Phase Equilib. 146(1):1–13.
  • Ng, Heng-Joo, and Donald B Robinson. (1985). Hydrate formation in systems containing methane, ethane, propane, carbon dioxide or hydrogen sulfide in the presence of methanol. Fluid Phase Equilib. 21(1):145–155.
  • Ross, Martin J., and Leonard S. Toczylkin. (1992). Hydrate dissociation pressures for methane or ethane in the presence of aqueous solutions of triethylene glycol. J. Chem. Eng. Data 37(4):488–491.
  • Smola, Alex, and Vladimir Vapnik. (1997). Support vector regression machines. Adv. Neural Inf. Process. Syst. 9:155–161.
  • Wang, Lipo. (2005). Support Vector Machines: Theory and Applications. Vol. 177. Springer Science & Business Media.
  • Welling, Max. (2004). Support vector regression. Toronto, Kanada: Department of Computer Science, University of Toronto.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.