222
Views
8
CrossRef citations to date
0
Altmetric
Oil chemistry/Catalysis

A 12-lump kinetic model for heavy oil fluid catalytic cracking for cleaning gasoline and enhancing light olefins yield

, , , , ORCID Icon &

References

  • Araujo, M., and L. I. Felipe. 2006. Modeling and simulation of an industrial fluid catalytic cracking riser reactor using a lump-kinetic model for a distinct feedstock. Industrial & Engineering Chemistry Research 45 (1):120–8.
  • Dai, Y. H. 2013. A perfect example for the BFGS method. Mathematical Programming 138 (1–2):501–30. doi:10.1007/s10107-012-0522-2.
  • Deng, X. L., Y. X. Sha, L. Y. Wang, G. L. Wang and F. D. Meng. 1994. Research of residual oil catalytic cracking kinetic model. Petroleum Refining and Chemical Engineering 26 (8):35–9.
  • Du, Y., Q. Yang, C. Zhang, and C. Yang. 2015. Ten-lump kinetic model for the two-stage riser catalytic cracking for maximizing propylene yield(TMP) process. Applied Petrochemical Research 5 (4):297–303. doi:10.1007/s13203-015-0114-1.
  • Golrokh Sani, A., H. Ale Ebrahim, and M. J. Azarhoosh. 2018. 8-lump kinetic model for fluid catalytic cracking with olefin detailed distribution study. Fuel 225:322–35. doi:10.1016/j.fuel.2018.03.087.
  • Jacob, S. M., B. Gross, S. E. Voltz, and V. W. Weekman. 1976. A lumping and reaction scheme for catalytic cracking. AIChE Journal 22 (4):701–13.
  • Jiang, H. B., H. N. Zhong, and H. Ning. 2010. A lumped kinetic model for heavy oil catalytic cracking MIP process. Petroleum Journal (Petroleum Processing) 26 (6):901–9.
  • John, Y. M., M. A. Mustafa, R. Patel, and I. M. Mujtaba. 2019. Parameter estimation of a six-lump kinetic model of an industrial fluid catalytic cracking unit. Fuel 235:1436–54. doi:10.1016/j.fuel.2018.08.033.
  • Ke, X. M. 2015. Discussion on the development environment and thoughts of China's oil refining industry during the 13th five-year plan period. International Petroleum Economy 23 (5):7–13.
  • Ouyang, F. S., Q. H. Xu, and H. Ning. 2015. A kinetic model for flexible dual-riser fluid catalytic cracking process. Petroleum Science & Technology 33 (5):614–21.
  • Ouyang, F. S., Y. Q. Wang, and Q. Ling. 2016. A lumped kinetic model for heavy oil catalytic cracking FDFCC process. Petroleum Science & Technology 34 (4):335–42.
  • Sha, Y. X., X. S. Chen, H. X. Weng, J. X. Liu, Z. M. Zhu and X. J.Mao. 1985. Study on kinetic model of catalytic cracking lumping:(I) determination of physical model. Journal of Petroleum Sciences (Petroleum Processing) 1 (1):3–10.
  • Shen, Y., L. L. Zhang, Q. Z. Zhang, and D.-J. Di 2016. Optimization and application of GM(1,1) model based on third-order and fourth-order Runge-Kutta method. Practice and Knowledge of Mathematics 46 (7):168–73.
  • Weng, H. X., and F. S. Ouyang. 1995. Lumped kinetic model of heavy oil catalytic cracking reaction (I) establishment of model. Journal of Chemical Industry 46 (6):662–8.
  • Zhang, R. Y. 2012. Python scientific calculation. Beijing: Tsinghua University Press.
  • Zong, G., H. Ning, H. Jiang, and F. S. Ouyang. 2010. The lumping kinetic model for the heavy oil catalytic cracking MIP Process. Petroleum Science and Technology 28 (17):1778–87. doi:10.1080/10916460903261749.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.