51
Views
2
CrossRef citations to date
0
Altmetric
Reservoir Engineering

Self-foamed biosystem for deep reservoir conformance control

, , &

References

  • Aarra, M. G., A. Skauge, J. Solbakken, and P. A. Ormehaug. 2014. Properties of N2- and CO2- foams as a function of pressure. Journal of Petroleum Science and Engineering 116:72–80. doi: https://doi.org/10.1016/j.petrol.2014.02.017.
  • Ahmed, S., K. A. Elraies, I. M. Tan, and M. Mumtaz. 2017. A review on CO2 foam for mobility control: Enhanced oil recovery. Singapore: Springer.
  • Ahmed, S., K. A. Elraies, I. M. Tan, and M. R. Hashmet. 2017. Experimental investigation of associative polymer performance for CO2, foam enhanced oil recovery. Journal of Petroleum Science and Engineering 157:971–9. [Database] doi: https://doi.org/10.1016/j.petrol.2017.08.018.
  • Awan, A. R., R. Teigland, and J. Kleppe. 2008. A survey of North Sea enhanced-oil-recovery projects initiated during the years 1975 to 2005. SPE Reservoir Evaluation & Engineering 11 (03):497–512. doi: https://doi.org/10.2118/99546-PA.
  • Bai, B., F. Huang, Y. Liu, R. S. Seright, and Y. Wang. 2008. Case study on preformed particle gel for in-depth fluid diversion. SPE-113997-MS. In SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK.
  • Coste, J. P., Y. Liu, B. Bai, Y. Li, P. Shen, Z. Wang, and G. Zhu. 2000. In-depth fluid diversion by pre-gelled particles. Laboratory study and pilot testing. SPE-59362-MS. In SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK. doi: https://doi.org/10.2118/59362-MS.
  • Druetta, P., P. Raffa, and F. Picchioni. 2018. Plenty of room at the bottom: Nanotechnology as solution to an old issue in enhanced oil recovery. Applied Sciences 8 (12):2596. doi: https://doi.org/10.3390/app8122596.
  • Entov, V. M., and F. D. Turetskaya. 1995. Hydrodynamical modeling of the development of non-homogeneous oil reservoirs. Fluid Dynamics 30 (6):877–82. doi: https://doi.org/10.1007/BF02078203.
  • Fielding, R. C., Jr., D. H. Gibbons, and F. P. Legrand. 1994. In-depth drive fluid diversion using an evolution of colloidal dispersion gels and new bulk gels: An operational case history of North Rainbow Ranch Unit. SPE-27773-MS. In SPE/DOE Ninth Symposium on Improved Oil Recovery, Tulsa, OK. doi: https://doi.org/10.2118/27773-MS.
  • Guo, H., M. J. Faber, M. A. Buijse, and P. L. Zitha. 2011. A novel alkaline-surfactant-foam EOR process. SPE-145043-MS. In SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia. doi: https://doi.org/10.2118/145043-MS.
  • Holt, T., F. Vassenden, and I. Svorstol. 1996. Effects of pressure on foam stability; implications for foam screening. SPE-35398-MS. In SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK. doi: https://doi.org/10.2118/35398-MS.
  • Ismailov, F. S., B. A. Suleimanov, E. F. Veliyev, S. S. Bayramova, and R. Z. Isaev. 2013. Foaming composition. Patent RU 2531708.
  • Jones, S. A., V. Van Der Bent, R. Farajzadeh, W. R. Rossen, and S. Vincent-Bonnieu. 2016. Surfactant screening for foam EOR: Correlation between bulk and core-flood experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects 500:166–76. doi: https://doi.org/10.1016/j.colsurfa.2016.03.072.
  • Liu, Q., S. Liu, D. Luo, and B. Peng. 2019. Ultra-low interfacial tension foam system for enhanced oil recovery. Applied Sciences 9 (10):2155. doi: https://doi.org/10.3390/app9102155.
  • Luo, Y., J. Zou, J. Li, H. Zou, and M. Liang. 2018. Effect of crosslinking agent on properties and morphology of water-blown semirigid polyurethane foam. Journal of Applied Polymer Science 135 (42):46753. doi: https://doi.org/10.1002/app.46753.
  • Mack, J. C., and J. E. Smith. 1994. In-depth colloidal dispersion gels improve oil recovery efficiency. SPE-27780-MS. In SPE/DOE Ninth Symposium on Improved Oil Recovery, Tulsa, OK.
  • Mirzadzhanzade, A. K., I. M. Ametov, A. O. Bogopol'skij, and A. O. Bogopol'skij. 1993. Method for development of oil deposit. Patent SU 01822219.
  • Norouzi, H., M. Madhi, M. Seyyedi, and M. Rezaee. 2018. Foam propagation and oil recovery potential at largedistances from an injection well. Chemical Engineering Research and Design 135:67–77. doi: https://doi.org/10.1016/j.cherd.2018.05.024.
  • Ocampo, A., A. Restrepo, H. Cifuentes, J. Hester, N. Orozco, C. Gil, E. Castro, S. Lopera, and C. Gonzalez. 2013. Successful foam EOR pilot in a mature volatile oil reservoir under miscible gas injection. Spe JPT 65:117–9.
  • Rzayeva, S. J. 2020. Selective insulation of water flows in a well based on the use of production waste. SOCAR Proceedings 3:118–25.
  • Shakhverdiev, A. K., B. A. Suleimanov, and G. M. Panakhov. 2002. Method of oil pool development. RU Patent 02170867.
  • Sharifpour, E., M. Riazi, and S. Ayatollahi. 2015. Smart technique in water shutoff treatment for a layered reservoir through an engineered injection/production scheme. Industrial & Engineering Chemistry Research 54 (44):11236–46. doi: https://doi.org/10.1021/acs.iecr.5b02191.
  • Suleimanov, B. A. 1999. The slip effect during filtration of gassed non-newtonian liquids. Colloid Journal 61 (6):786–90.
  • Suleimanov, B. A., and E. F. Veliyev. 2016. Nanogels for deep reservoir conformance control. SPE-182534-MS. In SPE Annual Caspian Technical Conference & Exhibition, Astana, Kazakhstan.
  • Suleimanov, B. A., S. J. Rzayeva, and S. S. Keldibayeva. 2020. A new microbial enhanced oil recovery (MEOR) method for oil formations containing highly mineralized water. Petroleum Science and Technology 38 (23):999–1006. doi: https://doi.org/10.1080/10916466.2020.1793777.
  • Suleimanov, B. A., S. J. Rzayeva, and U. T. Akhmedova. 2021. Self-gasified biosystems for enhanced oil recovery. International Journal of Modern Physics B 35 (27):2150274. doi: https://doi.org/10.1142/S021797922150274X.
  • Suleimanov, B. A., S. J. Rzayeva, F. К. Kyazymov, А. F. Akberova, and U. T. Akhmedova. 2021. Method for oil reservoir development. Patent ЕА № 038892.
  • Talebian, S. H., R. Masoudi, I. M. Tan, and P. L. J. Zitha. 2014. Foam assisted CO2 - EOR: A review of concept, challenges, and future prospects. Journal of Petroleum Science and Engineering 120:202–15. doi: https://doi.org/10.1016/j.petrol.2014.05.013.
  • Talebian, S. H., R. Masoudi, I. M. Tan, and P. L. Zitha. 2013. Foam assisted CO2 - EOR; concepts, challenges and applications. SPE-165280-MS. In SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia. doi: https://doi.org/10.2118/165280-MS.
  • Vasil'ev, V. K., T. I. Bykova, and A. A. Markin. 1976. Foam stability under pressure Ustojchivost' peny pod davleniem. Neftepromyslovoe Delo 5:27–8. [in Russian]
  • Vishnyakov, V., B. Suleimanov, A. Salmanov, and E. Zeynalov. 2020. Primer on enhanced oil recovery. Cambridge, MA: Elsevier.
  • Wu, Y., M. A. Mooney, and M. Cha. 2018. An experimental examination of foam stability under pressure for EPB TBM tunneling. Tunnelling and Underground Space Technology 77:80–93. doi: https://doi.org/10.1016/j.tust.2018.02.011.
  • Xiong, J. Z., Zhao, W. Sun, and W. Liu. 2021. Foam stabilization mechanism of a novel non-cross-linked foam fracturing fluid. ACS Omega 6 (48):32863–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.