246
Views
0
CrossRef citations to date
0
Altmetric
Improved and Enhnaced Oil Recovery

Effect of supercritical CO2 on limestone's pore structure based on NMR and SEM

, , , , ORCID Icon & ORCID Icon

References

  • Bai, X., D. Zhang, S. Zeng, S. Zhang, D. Wang, and F. Wang. 2020. An enhanced coalbed methane recovery technique based on CO2 phase transition jet coal-breaking behavior. Fuel 265:116912. doi:10.1016/j.fuel.2019.116912.
  • Cui, W. X., and M. Y. Cui. 2017. Waterless stimulation for unconventional resources: An alternative to conventional water-based fracturing techniques. International Petroleum Exhibition & Conference, Abu Dhabi, 13-16 November. doi:10.2118/188740-MS.
  • Cui, G., S. Ren, Z. Rui, J. Ezekiel, L. Zhang, and H. Wang. 2018. The influence of complicated fluid-rock interactions on the geothermal exploitation in the CO2 plume geothermal system. Applied Energy 227:49–63. doi:10.1016/j.apenergy.2017.10.114.
  • Elkhoury, J. E., P. Ameli, and R. L. Detwiler. 2013. Dissolution and deformation in fractured carbonates caused by flow of CO2-rich brine under reservoir conditions. International Journal of Greenhouse Gas Control 16:S203–S215. doi:10.1016/j.ijggc.2013.02.023.
  • Fheed, A., and A. Krzyżak. 2017. A textural and diagenetic assessment of the Zechstein Limestone carbonates, Poland using the transverse Nuclear Magnetic Resonance. Journal of Petroleum Science and Engineering 152:538–48. doi:10.1016/j.petrol.2017.01.049.
  • Guo, X., Z. Huang, L. Zhao, W. Han, C. Ding, X. Sun, R. Yan, T. Zhang, X. Yang, and R. Wang. 2019. Pore structure and multi-fractal analysis of tight sandstone using MIP, NMR and NMRC methods: A case study from the Kuqa depression, China. Journal of Petroleum Science and Engineering 178:544–58. doi:10.1016/j.petrol.2019.03.069.
  • Hajj, E. L. 2013. Carbonate reservoir interaction with supercritical carbon dioxide. Beijing: International Petroleum Technology.
  • Hu, G., W. He, and M. Sun. 2018. Enhancing coal seam gas using liquid CO2 phase-transition blasting with cross-measure borehole. Journal of Natural Gas Science and Engineering 60:164–73. doi:10.1016/j.jngse.2018.10.013.
  • Jaafar, F. 2019. Impact of temperature on fluid-Rock interactions during CO2 injection in depleted limestone aquifers: Laboratory and modelling studies. SPE International Conference on Oilfield Chemistry, 8–9 April, Galveston, Texas, USA.
  • Li, Q., R. R. Song, H. Shi, J. L. Ma, X. H. Liu, and X. C. Li. 2018. U-tube based near-surface environmental monitoring in the Shenhua carbon dioxide capture and storage (CCS) project. Environmental Science and Pollution Research International 25 (12):12034–52. doi:10.1007/s11356-018-1252-7.
  • Li, S. H. 2019. Experimental study on the impact of CO2–Brine–Rock interaction on rock properties and fracture propagation during supercritical CO2 fracturing in Chang-7 tight sandstone formation. US Rock Mechanics/Geomechanics Symposium, New York.
  • Liu, J., and J. J. Sheng. 2019. Experimental investigation of surfactant enhanced spontaneous imbibition in Chinese shale oil reservoirs using NMR tests. Journal of Industrial and Engineering Chemistry 72:414–22. doi:10.1016/j.jiec.2018.12.044.
  • Luo, B., J. Guo, W. Fu, C. Lu, J. Zeng, and L. Liu. 2019. Experimental investigation of shear slippage behavior in naturally fractured carbonate reservoirs using X-ray CT. International Journal of Rock Mechanics and Mining Sciences 122:104066. doi:10.1016/j.ijrmms.2019.104066.
  • Luquot, L. 2018. Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks. Fuel. Processing Technology 169:122–31.
  • Malik, A. R., A. A. Dashash, and S. M. Driweesh. 2014. Successful implementation of CO2 energized acid fracturing treatment in deep, tight and sour carbonate gas reservoir in Saudi Arabia that reduced fresh water consumption and enhanced well performance, Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, 10–3. November.
  • Middleton, R. S., J. W. Carey, R. P. Currier, J. D. Hyman, Q. Kang, S. Karra, J. Jiménez-Martínez, M. L. Porter, and H. S. Viswanathan. 2015. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Applied Energy 147:500–9. doi:10.1016/j.apenergy.2015.03.023.
  • Mohamed, I. M. 2011. Permeability change during CO2 injection in carbonate aquifers: Experimental study. SPE Americas E&P Health, Safety, Security and Environmental, Houston, TX. doi:10.2118/140979-MS.
  • Müller-Huber, E., J. Schön, and F. Börner. 2016. Pore space characterization in carbonate rocks — Approach to combine nuclear magnetic resonance and elastic wave velocity measurements. Journal of Applied Geophysics 127:68–81. doi:10.1016/j.jappgeo.2016.02.011.
  • Pomerantz, A. E., E. E. Sigmund, and Y. Q. Song. 2007. Characterization of carbonate rock by MRI relaxometry. Magnetic Resonance Imaging 25 (4):580–9. doi:10.1016/j.mri.2007.01.091.
  • Rui, Z., J. Jiang, J. Lu, and M. Randy. 2019. An integrated technical-economic-environmental assessment of CO2 enhanced oil recovery. Applied Energy 247:190–211. doi:10.1016/j.apenergy.2019.04.025.
  • Sanchez, M. J. T. Abel, M. Idris, and S. Aramco. 2015. Acid fracturing tight gas carbonates reservoirs using CO2 to assist stimulation fluids: An alternative to less water consumption while maintaining productivity. SPE Middle East Unconventional Resources Conference and Exhibition, Muscat, 26–28 January. doi:10.2118/SPE-172913-MS.
  • Seo, Y., H. Lee, and T. Uchida. 2002. Methane and carbon dioxide hydrate phase behavior in small porous silica gels: Three—phase equilibrium determination and thermodynamic modeling. Langmuir 18 (24):9164–70. doi:10.1021/la0257844.
  • Shi, X. L., and S. D. Mao. 2017. An improved model for CO2 solubility in aqueous electrolyte solution containing Na+, K+, Mg2+, Ca2+, Cl- and SO42- under conditions of CO2 capture and sequestration. Chemical Geology 463:12–28. doi:10.1016/j.chemgeo.2017.05.005.
  • Steel, L., E. Mackay, and M. Mercedes. 2018. Experimental investigation of CO2-brine-calcite interactions under reservoir conditions. Fuel Processing Technology 169:122–31. doi:10.1016/j.fuproc.2017.09.028.
  • Vincent, B., M. Fleury, Y. Santerre, and B. Brigaud. 2011. NMR relaxation of neritic carbonates: An integrated petrophysical and petrographical approach. Journal of Applied Geophysics 74 (1):38–58. doi:10.1016/j.jappgeo.2011.03.002.
  • Wang, H., X. Li, K. Sepehrnoori, Y. Zheng, and W. Yan. 2019. Calculation of the wellbore temperature and pressure distribution during supercritical CO2 fracturing flowback process. International Journal of Heat and Mass Transfer 139:10–6. doi:10.1016/j.ijheatmasstransfer.2019.04.109.
  • Wang, Z., Y. Bai, H. Zhang, and Y. Liu. 2019. Investigation on gelation nucleation kinetics of waxy crude oil emulsions by their thermal behavior. Journal of Petroleum Science and Engineering 181:106230. doi:10.1016/j.petrol.2019.106230.
  • Xiao, D., and B. J. Balcom. 2013. Restricted k-space sampling in pure phase encode MRI of rock core plugs. Journal of Magnetic Resonance (San Diego, CA: 1997) 231:126–32. doi:10.1016/j.jmr.2013.04.001.
  • Yin, H., J. Zhou, Y. Jiang, X. Xian, and Q. Liu. 2016. Physical and structural changes in shale associated with supercritical CO2 exposure. Fuel 184:289–303. doi:10.1016/j.fuel.2016.07.028.
  • Zhao, X., X. Liao, W. Wang, C. Chen, Z. Rui, and H. Wang. 2014. The CO2 storage capacity evaluation: Methodology and determination of key factors. Journal of the Energy Institute 87 (4):297–305. doi:10.1016/j.joei.2014.03.032.
  • Zhao, X., Z. Rui, X. Liao, and R. Zhang. 2016. Case studies on the CO2 storage and EOR in heterogeneous, highly water-saturated, and extra-low permeability Chinese reservoir. Journal of Natural Gas Science and Engineering 29:275–83. doi:10.1016/j.jngse.2015.12.044.
  • Zhou, D., G. Zhang, M. Prasad, and P. Wang. 2019. The effects of temperature on supercritical CO2 induced fracture: An experimental study. Fuel 247:126–34., doi:10.1016/j.fuel.2019.02.099.
  • Zhou, J., K. Yang, S. Tian, L. Zhou, X. Xian, Y. Jiang, M. Liu, and J. Cai. 2020. CO2-water-shale interaction induced shale microstructural alteration. Fuel 263:116642. doi:10.1016/j.fuel.2019.116642.
  • Zhou, J., S. Tian, L. Zhou, X. Xian, K. Yang, Y. Jiang, C. Zhang, and Y. Guo. 2020. Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale. Energy 191:116574. doi:10.1016/j.energy.2019.116574.
  • Zou, Y., S. Li, X. Ma, S. Zhang, N. Li, and M. Chen. 2018. Effects of CO2–brine–rock interaction on porosity/permeability and mechanical properties during supercritical-CO2 fracturing in shale reservoirs. Journal of Natural Gas Science and Engineering 49:157–68. doi:10.1016/j.jngse.2017.11.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.