2,006
Views
4
CrossRef citations to date
0
Altmetric
Feature Articles

Bivariate Mixed Poisson Regression Models with Varying Dispersion

&

References

  • Abdallah, A., J.-P. Boucher, and H. Cossette. 2016. Sarmanov family of multivariate distributions for bivariate dynamic claim counts model. Insurance: Mathematics and Economics 68:120–33. doi:10.1016/j.insmatheco.2016.01.003
  • Aguero-Valverde, J., and P. P. Jovanis. 2009. Bayesian multivariate Poisson Lognormal models for crash severity modeling and site ranking. Transportation Research Record 2136 (1):82–91. doi:10.3141/2136-10
  • Alfò, M., and G. Trovato. 2004. Semiparametric mixture models for multivariate count data, with application. The Econometrics Journal 7 (2):426–54. doi:10.1111/j.1368-423X.2004.00138.x
  • Anderson, D., and K. Burnham. 2004. Model selection and multi-model inference. 2nd ed. New York: Springer.
  • Barreto-Souza, W., and A. B. Simas. 2016. General mixed Poisson regression models with varying dispersion. Statistics and Computing 26 (6):1263–280. doi:10.1007/s11222-015-9601-6
  • Bermúdez, L. (2009). A priori ratemaking using bivariate Poisson regression models. Insurance: Mathematics and Economics 44 (1):135–41.
  • Bermúdez, L., M. Guillén, and D. Karlis. 2018. Allowing for time and cross dependence assumptions between claim counts in ratemaking models. Insurance: Mathematics and Economics 83:161–69. doi:10.1016/j.insmatheco.2018.06.003
  • Bermúdez, L., and D. Karlis. 2011. Bayesian multivariate Poisson models for insurance ratemaking. Insurance: Mathematics and Economics 48 (2):226–36. doi:10.1016/j.insmatheco.2010.11.001
  • Bermúdez, L., and D. Karlis. 2012. A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking. Computational Statistics & Data Analysis 56 (12):3988–999. doi:10.1016/j.csda.2012.05.016
  • Bermúdez, L., and D. Karlis. 2017. A posteriori ratemaking using bivariate Poisson models. Scandinavian Actuarial Journal 2017 (2):148–58. doi:10.1080/03461238.2015.1094403
  • Abdallah, A., J.-P. Boucher, and H. Cossette. 2016. Sarmanov family of multivariate distributions for bivariate dynamic claim counts model. Insurance: Mathematics and Economics 68:120–33. doi:10.1016/j.insmatheco.2016.01.003
  • Aguero-Valverde, J., and P. P. Jovanis. 2009. Bayesian multivariate Poisson Lognormal models for crash severity modeling and site ranking. Transportation Research Record 2136 (1):82–91. doi:10.3141/2136-10
  • Alfò, M., and G. Trovato. 2004. Semiparametric mixture models for multivariate count data, with application. The Econometrics Journal 7 (2):426–54. doi:10.1111/j.1368-423X.2004.00138.x
  • Anderson, D., and K. Burnham. 2004. Model selection and multi-model inference. 2nd ed. New York: Springer.
  • Barreto-Souza, W., and A. B. Simas. 2016. General mixed Poisson regression models with varying dispersion. Statistics and Computing 26 (6):1263–280. doi:10.1007/s11222-015-9601-6
  • Bermúdez, L. (2009). A priori ratemaking using bivariate Poisson regression models. Insurance: Mathematics and Economics 44 (1):135–41.
  • Bermúdez, L., M. Guillén, and D. Karlis. 2018. Allowing for time and cross dependence assumptions between claim counts in ratemaking models. Insurance: Mathematics and Economics 83:161–69. doi:10.1016/j.insmatheco.2018.06.003
  • Bermúdez, L., and D. Karlis. 2011. Bayesian multivariate Poisson models for insurance ratemaking. Insurance: Mathematics and Economics 48 (2):226–36. doi:10.1016/j.insmatheco.2010.11.001
  • Bermúdez, L., and D. Karlis. 2012. A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking. Computational Statistics & Data Analysis 56 (12):3988–999. doi:10.1016/j.csda.2012.05.016
  • Bermúdez, L., and D. Karlis. 2017. A posteriori ratemaking using bivariate Poisson models. Scandinavian Actuarial Journal 2017 (2):148–58. doi:10.1080/03461238.2015.1094403
  • Bolancé, C., M. Guillen, and A. Pitarque. 2020. A Sarmanov distribution with beta marginals: An application to motor insurance pricing. Mathematics 8 (11):49–59. doi:10.3390/math8112020
  • Bolancé, C., and R. Vernic. 2019. Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution. Insurance: Mathematics and Economics 85:89–103. doi:10.1016/j.insmatheco.2019.01.001
  • Booth, J. G., and J. P. Hobert. 1999. Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61 (1):265–85. doi:10.1111/1467-9868.00176
  • Booth, J. G., J. P. Hobert, and W. Jank. 2001. A survey of Monte Carlo algorithms for maximizing the likelihood of a two-stage hierarchical model. Statistical Modelling 1 (4):333–49. doi:10.1177/1471082X0100100407
  • Cameron, A. C., T. Li, P. K. Trivedi, and D. M. Zimmer. 2004. Modelling the differences in counted outcomes using bivariate copula models with application to mismeasured counts. The Econometrics Journal 7 (2):566–84. doi:10.1111/j.1368-423X.2004.00144.x
  • Cameron, A. C., and P. K. Trivedi. 2013. Regression analysis of count data. Vol. 53. New York, NY: Cambridge University Press.
  • Chib, S., and R. Winkelmann. 2001. Markov chain Monte Carlo analysis of correlated count data. Journal of Business & Economic Statistics 19 (4):428–35. doi:10.1198/07350010152596673
  • Cole, T. J., and P. J. Green. 1992. Smoothing reference centile curves: The LMS method and penalized likelihood. Statistics in Medicine 11 (10):1305–319. doi:10.1002/sim.4780111005
  • Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological) 39 (1):1–22.
  • Denuit, M., J. Dhaene, M. Goovaerts, and R. Kaas. 2006. Actuarial theory for dependent risks: Measures, orders and models. West Sussex, England: John Wiley & Sons.
  • Denuit, M., M. Guillen, and J. Trufin. 2019. Multivariate credibility modelling for usage-based motor insurance pricing with behavioural data. Annals of Actuarial Science 13 (2):378–99. doi:10.1017/S1748499518000349
  • Denuit, M., and P. Lambert. 2005. Constraints on concordance measures in bivariate discrete data. Journal of Multivariate Analysis 93 (1):40–57. doi:10.1016/j.jmva.2004.01.004
  • Dunn, P. K., and G. K. Smyth. 1996. Randomized quantile residuals. Journal of Computational and Graphical Statistics 5 (3):236–44.
  • El-Basyouny, K., and T. Sayed. 2009. Collision prediction models using multivariate Poisson–Lognormal regression. Accident Analysis & Prevention 41 (4):820–28. doi:10.1016/j.aap.2009.04.005
  • Famoye, F. 2010. A new bivariate generalized Poisson distribution. Statistica Neerlandica 64 (1):112–24. doi:10.1111/j.1467-9574.2009.00446.x
  • Famoye, F. 2012. Comparisons of some bivariate regression models. Journal of Statistical Computation and Simulation 82 (7):937–49. doi:10.1080/00949655.2010.543679
  • Fung, T. C., A. L. Badescu, and X. S. Lin. 2019a. A class of mixture of experts models for general insurance: Application to correlated claim frequencies. ASTIN Bulletin 49 (3):647–88. doi:10.1017/asb.2019.25
  • Fung, T. C., A. L. Badescu, and X. S. Lin. 2019b. A class of mixture of experts models for general insurance: Theoretical developments. Insurance: Mathematics and Economics 89:111–27. doi:10.1016/j.insmatheco.2019.09.007
  • Ghitany, M., D. Karlis, D. Al-Mutairi, and F. Al-Awadhi. 2012. An EM algorithm for multivariate mixed Poisson regression models and its application. Applied Mathematical Sciences 6 (137):6843–856.
  • Gómez-Déniz, E., A. Hernández, J. M. Pérez, and F. J. Vázquez-Polo. 2002. Measuring sensitivity in a bonus-malus system. Insurance: Mathematics and Economics 31 (1):105–13.
  • Gómez-Déniz, E., F. J. Vázquez Polo, and A. H. Bastida. 2000. Robust Bayesian premium principles in actuarial science. Journal of the Royal Statistical Society: Series D (The Statistician) 49 (2):241–52. doi:10.1111/1467-9884.00234
  • Gurmu, S., and J. Elder. 2000. Generalized bivariate count data regression models. Economics Letters 68 (1):31–36. doi:10.1016/S0165-1765(00)00225-1
  • Heilmann, W.-R. 1989. Decision theoretic foundations of credibility theory. Insurance: Mathematics and Economics 8 (1):77–95. doi:10.1016/0167-6687(89)90050-4
  • Ho, L. L., and J. d. M. Singer. 2001. Generalized least squares methods for bivariate Poisson regression. Communications in Statistics - Theory and Methods 30 (2):263–77. doi:10.1081/STA-100002030
  • Insurance Europe. 2019. European Motor Insurance Markets 2019. Accessed February 8, 2019. https://www.insuranceeurope.eu/european-motor-insurance-markets-2019.
  • Joe, H. 1997. Multivariate models and multivariate dependence concepts. New York: CRC Press.
  • Joe, H. 2005. Asymptotic efficiency of the two-stage estimation method for copula-based models. Journal of Multivariate Analysis 94 (2):401–19. doi:10.1016/j.jmva.2004.06.003
  • Jung, R. C., and R. Winkelmann. 1993. Two aspects of labor mobility: A bivariate Poisson regression approach. Empirical Economics 18 (3):543–56. doi:10.1007/BF01176203
  • Karlis, D. 2001. A general EM approach for maximum likelihood estimation in mixed Poisson regression models. Statistical Modelling 1 (4):305–18. doi:10.1177/1471082X0100100405
  • Karlis, D. 2005. EM algorithm for mixed Poisson and other discrete distributions. ASTIN Bulletin 35 (1):3–24. doi:10.1017/S0515036100014033
  • Karlis, D., and L. Meligkotsidou. 2005. Multivariate Poisson regression with covariance structure. Statistics and Computing 15 (4):255–65. doi:10.1007/s11222-005-4069-4
  • Kocherlakota, S., and K. Kocherlakota. 2001. Regression in the bivariate Poisson distribution. Communications in Statistics - Theory and Methods 30 (5):815–25. doi:10.1081/STA-100002259
  • Lee, A. 1999. Applications: Modelling rugby league data via bivariate negative binomial regression. Australian & New Zealand Journal of Statistics 41 (2):141–52. doi:10.1111/1467-842X.00070
  • Lemaire, J. 1995. Bonus-malus systems in automobile insurance. New York: Kluwer Academic.
  • Louis, T. A. 1982. Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological) 44 (2):226–33.
  • Ma, J., K. M. Kockelman, and P. Damien. 2008. A multivariate Poisson–Lognormal regression model for prediction of crash counts by severity, using Bayesian methods. Accident Analysis & Prevention 40 (3):964–75. doi:10.1016/j.aap.2007.11.002
  • McLachlan, G. J., and T. Krishnan. 2007. The EM algorithm and extensions. Vol. 382. Hoboken, NJ: John Wiley & Sons.
  • Mesfioui, M., and A. Tajar. 2005. On the properties of some nonparametric concordance measures in the discrete case. Nonparametric Statistics 17 (5):541–54. doi:10.1080/10485250500038967
  • Mesfioui, M., J. Trufin, and P. Zuyderhoff. 2021. Bounds on Spearman’s rho when at least one random variable is discrete. European Actuarial Journal 12:1–28. doi:10.1007/s13385-021-00289-8
  • Munkin, M. K., and P. K. Trivedi. 1999. Simulated maximum likelihood estimation of multivariate mixed-Poisson regression models, with application. The Econometrics Journal 2 (1):29–48. doi:10.1111/1368-423X.00019
  • Nikoloulopoulos, A. K. 2013a. Copula-based models for multivariate discrete response data. In Copulae in mathematical and quantitative finance, 231–49. Berlin, Heidelberg: Springer.
  • Nikoloulopoulos, A. K. 2013b. On the estimation of Normal copula discrete regression models using the continuous extension and simulated likelihood. Journal of Statistical Planning and Inference 143 (11):1923–937. doi:10.1016/j.jspi.2013.06.015
  • Nikoloulopoulos, A. K. 2016. Efficient estimation of high-dimensional multivariate normal copula models with discrete spatial responses. Stochastic Environmental Research and Risk Assessment 30 (2):493–505. doi:10.1007/s00477-015-1060-2
  • Nikoloulopoulos, A. K., and D. Karlis. 2009. Modeling multivariate count data using copulas. Communications in Statistics - Simulation and Computation 39 (1):172–87. doi:10.1080/03610910903391262
  • Nikoloulopoulos, A. K., and D. Karlis. 2010. Regression in a copula model for bivariate count data. Journal of Applied Statistics 37 (9):1555–568. doi:10.1080/02664760903093591
  • Park, E. S., and D. Lord. 2007. Multivariate Poisson–Lognormal models for jointly modeling crash frequency by severity. Transportation Research Record 2019 (1):1–6. doi:10.3141/2019-01
  • Pechon, F., M. Denuit, and J. Trufin. 2019. Multivariate modelling of multiple guarantees in motor insurance of a household. European Actuarial Journal 9 (2):575–602. doi:10.1007/s13385-019-00201-5
  • Pechon, F., M. Denuit, and J. Trufin. 2021. Home and motor insurance joined at a household level using multivariate credibility. Annals of Actuarial Science 15 (1):82–114. doi:10.1017/S1748499520000160
  • Pechon, F., J. Trufin, and M. Denuit. 2018. Multivariate modelling of household claim frequencies in motor third-party liability insurance. ASTIN Bulletin 48 (3):969–93. doi:10.1017/asb.2018.21
  • R Core Team. (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Raftery, A. E. 1995. Bayesian model selection in social research. Sociological Methodology 25:111–63. doi:10.2307/271063
  • Rigby, R. A., and M. D. Stasinopoulos. 1996a. Mean and dispersion additive models. In Statistical theory and computational aspects of smoothing, 215–230. Heidelberg: Physica-Verlag.
  • Rigby, R. A., and D. Stasinopoulos. 1996b. A semi-parametric additive model for variance heterogeneity. Statistics and Computing 6 (1):57–65. doi:10.1007/BF00161574
  • Rigby, R. A., and D. M. Stasinopoulos. 2005. Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics) 54 (3):507–54.
  • Safari-Katesari, H., S. Y. Samadi, and S. Zaroudi. 2020. Modelling count data via copulas. Statistics 54 (6):1329–355. doi:10.1080/02331888.2020.1867140
  • Shared, M. 1980. On mixtures from exponential families. Journal of the Royal Statistical Society: Series B (Methodological) 42 (2):192–98.
  • Shi, P., and E. A. Valdez. 2014a. Longitudinal modeling of insurance claim counts using jitters. Scandinavian Actuarial Journal 2014 (2):159–79. doi:10.1080/03461238.2012.670611
  • Shi, P., and E. A. Valdez. 2014b. Multivariate negative binomial models for insurance claim counts. Insurance: Mathematics and Economics 55:18–29. doi:10.1016/j.insmatheco.2013.11.011
  • Silva, A., S. J. Rothstein, P. D. McNicholas, and S. Subedi. 2017. A multivariate Poisson–Lognormal mixture model for clustering transcriptome sequencing data. arXiv preprint arXiv:1711.11190.
  • Tzougas, G. 2020. EM estimation for the Poisson–inverse Gamma regression model with varying dispersion: An application to insurance ratemaking. Risks 8 (3):31–53. doi:10.3390/risks8030097
  • Tzougas, G., and D. Karlis. 2020. An EM algorithm for fitting a new class of mixed exponential regression models with varying dispersion. ASTIN Bulletin 50:555–83. doi:10.1017/asb.2020.13
  • Tzougas, G., S. Vrontos, and N. Frangos. 2018. Bonus-malus systems with two-component mixture models arising from different parametric families. North American Actuarial Journal 22 (1):55–91. doi:10.1080/10920277.2017.1368398
  • Wang, P. 2003. A bivariate zero-inflated negative binomial regression model for count data with excess zeros. Economics Letters 78 (3):373–78. doi:10.1016/S0165-1765(02)00262-8
  • Winkelmann, R. 2008. Econometric analysis of count data. Berlin, Heidelberg: Springer Science & Business Media.
  • Xue-Kun Song, P. 2000. Multivariate dispersion models generated from Gaussian copula. Scandinavian Journal of Statistics 27 (2):305–20. doi:10.1111/1467-9469.00191
  • Zhan, X., H. A. Aziz, and S. V. Ukkusuri. 2015. An efficient parallel sampling technique for multivariate Poisson–Lognormal model: Analysis with two crash count datasets. Analytic Methods in Accident Research 8:45–60. doi:10.1016/j.amar.2015.10.002
  • Zimmer, D. M., and P. K. Trivedi. 2006. Using trivariate copulas to model sample selection and treatment effects: Application to family health care demand. Journal of Business & Economic Statistics 24 (1):63–76. doi:10.1198/073500105000000153