575
Views
5
CrossRef citations to date
0
Altmetric
Feature Articles

A Neural Approach to Improve the Lee-Carter Mortality Density Forecasts

ORCID Icon, ORCID Icon & ORCID Icon

REFERENCES

  • Abadi, M., A. Aggarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/
  • Aggarwal, C. C. 2018. Neural networks and deep learning. A textbook. Cham: Springer
  • Booth, H., and L. Tickle. 2008. Mortality modelling and forecasting: A review of methods. Annals of Actuarial Science 3 (1–2):3–43. doi:10.1017/S1748499500000440
  • Breiman, L. 1996. Bagging predictors. Machine Learning 24:123–40. doi:10.1007/BF00058655
  • Brouhns, N., M. Denuit, and I. van Keilegom. 2005. Bootstrapping the Poisson log-bilinear model for mortality forecasting. Scandinavian Actuarial Journal 3:212–24. doi:10.1080/03461230510009754
  • Brouhns, N., M. Denuit, and J. Vermunt. 2002. A Poisson log-bilinear regression approach to the construction of projected life tables. Insurance: Mathematics and Economics 3:373–93.
  • Cairns, A. J. G., D. Blake, and K. Dowd. 2006. A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration. Journal of Risk and Insurance 73:687–718. doi:10.1111/j.1539-6975.2006.00195.x
  • Cairns, A. J. G., D. Blake, K. Dowd, G. D. Coughlan, D. Epstein, and M. Khalaf-Allah. 2011. Mortality density forecasts: An analysis of six stochastic mortality models. Insurance: Mathematics and Economics 48 (3):355–67. doi:10.1016/j.insmatheco.2010.12.005
  • Cairns, A. J. G., D. Blake, K. Dowd, G. D. Coughlan, D. Epstein, A. Ong, and I. Balevich. 2009. A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. North American Actuarial Journal 13:1–35. doi:10.1080/10920277.2009.10597538
  • Camarda, C. G. 2019. Smooth constrained mortality forecasting. Demographic Research 41:1091–130. doi:10.4054/DemRes.2019.41.38
  • Carney, J. G., P. Cunningham, and U. Bhagwan. 1999. Confidence and prediction intervals for neural network ensembles. In Proceeding of the International Joint Conference on Neural Networks, 1215–18. Washington DC, U.S.: IEEE Computer Society Press.
  • Chollet, F. 2017. R Interface to Keras, GitHub, https://github.com/rstudio/keras
  • Currie, I. D. 2017. On fitting generalized linear and non-linear models of mortality. Scandinavian Actuarial Journal 4:356–83. doi:10.1080/03461238.2014.928230
  • Currie, I. D., M. Durban, and P. H. C. Eilers. 2004. Smoothing and forecasting mortality rates. Statistical Modelling 4:279–98. doi:10.1191/1471082X04st080oa
  • D’Amato, V., E. Di Lorenzo, S. Haberman, M. Russolillo, and M. Sibillo. 2011. The Poisson log-bilinear Lee-Carter model. North American Actuarial Journal 15 (2):315–33. doi:10.1080/10920277.2011.10597623
  • D’Amato, V., S. Haberman, G. Piscopo, and M. Russolillo. 2012. Modelling dependent data for longevity projections. Insurance: Mathematics and Economics 51 (3):694–701. doi:10.1016/j.insmatheco.2012.09.008
  • D’Amato, V., S. Haberman, and M. Russolillo. 2012. The stratified sampling bootstrap for measuring the uncertainty in mortality forecasts. Methodology Computing in Applied Probability 14:135–48. doi:10.1007/s11009-011-9225-z
  • Deprez, P., P. V. Shevchenko, and M. V. Wüthrich. 2017. Machine learning techniques for mortality modeling. European Actuarial Journal 7:337–52. doi:10.1007/s13385-017-0152-4
  • Dowd, K., D. Blake, A. J. G. Cairns, G. D. Coughlan, D. Epstein, and M. Khalaf-Allah. 2010. Backtesting stochastic mortality models: An ex-post valuation of multi-period-ahead density forecasts. North American Actuarial Journal 14:281–98. doi:10.1080/10920277.2010.10597592
  • Efron, B., and R. Tibshirani. 1993. An introduction to the bootstrap. New York: Chapman & Hall.
  • Geman, S., E. Bienenstock, and R. Doursat. 1992. Neural networks and the bias/variance dilemma. Neural Computation 4 (1):1–58. doi:10.1162/neco.1992.4.1.1
  • Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep learning. Cambridge, MA, U. S.: MIT Press.
  • Hainaut, D. 2018. A neural-network analyzer for mortality forecast. ASTIN Bulletin 48 (2):481–508. doi:10.1017/asb.2017.45
  • Heskes, T. 1997. Practical confidence and prediction intervals. In Advances in neural information processing systems, vol. 9, 176–82. Cambridge, MA, U. S.: MIT Press.
  • Hocreiter, S., and J. Schmidhuber. 1997. Long short-term memory. Neural Computation 9 (8):1735–80. doi:10.1162/neco.1997.9.8.1735
  • Human Mortality Database. 2018. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). https://www.mortality.org.
  • Hunt, A., and D. Blake. 2014. A general procedure for constructing mortality models. North American Actuarial Journal 18 (1): 116–38. doi:10.1080/10920277.2013.852963
  • Hyndman, R. J., and Y. Khandakar. 2008. Automatic time series forecasting: The forecast package for R. Journal of Statistical Software 26 (3):1–22. doi:10.18637/jss.v027.i03
  • Kasiviswanathan, K. S., and K. P. Sudheer. 2013. Quantification of the predictive uncertainty of artificial neural network based river flow forecast models. Stochastic Environmental Research and Risk Assessment 27:137–46. doi:10.1007/s00477-012-0600-2
  • Khosravi, A., S. Nahavandi, D. Creighton, and A. F. Atiya. 2011. Comprehensive review of neural network–based prediction intervals and new advances. IEEE Transactions on Neural Networks 22 (9):1341–56. doi:10.1109/TNN.2011.2162110
  • Khosravi, A., S. Nahavandi, D. Srinivasan, and R. Khosravi. 2015. Constructing optimal prediction intervals by using neural networks and bootstrap method. IEEE Transactions on Neural Networks and Learning Systems 26 (8):1810–15. doi:10.1109/TNNLS.2014.2354418
  • Koissi, M., A. Shapiro, and G. Hognas. 2006. Evaluating and extending the Lee-Carter model for mortality forecasting confidence interval. Insurance: Mathematics and Economics 1:1–20.
  • Lee, R. D., and L. R. Carter. 1992. Modeling and forecasting U.S. mortality. Journal of the American Statistical Association 87 (419):659–71. doi:10.1080/01621459.1992.10475265
  • Levantesi, S., and A. Nigri. 2020. A random forest algorithm to improve the Lee-Carter mortality forecasting: Impact on q-forward. Soft Computing 24:8553–67. doi:10.1007/s00500-019-04427-z
  • Levantesi, S., A. Nigri, and G. Piscopo. 2021. Clustering-based simultaneous forecasting of life expectancy time series through long-short term memory neural networks. International Journal of Approximate Reasoning 140:282–97. doi:10.1016/j.ijar.2021.10.008
  • Levantesi, S., and V. Pizzorusso. 2019. Application of machine learning to mortality modeling and forecasting. Risks 7 (1):26.
  • Li, J., M. Hardy, and K. Tan. 2009. Uncertainty in mortality forecasting: An extension to the classical Lee-Carter approach. ASTIN Bulletin 39 (1):137–64. doi:10.2143/AST.39.1.2038060
  • Li, K., R. Wang, H. Lei, T. Zhang, Y. Liu, and X. Zheng. 2018. Interval prediction of solar power using an improved bootstrap method. Solar Energy 159:97–112. doi:10.1016/j.solener.2017.10.051
  • MacKay, D. J. C. 1992. A practical Bayesian framework for backpropagation networks. Neural Computation 4 (3):448–72. doi:10.1162/neco.1992.4.3.448
  • Makridakis, S., E. Spiliotis, and V. Assimakopoulos. 2020. The M4 Competition: 100,000 Time series and 61 forecasting methods. International Journal of Forecasting 36 (1):54–74. doi:10.1016/j.ijforecast.2019.04.014
  • Mazloumi, E., G. Rose, G. Currie, and S. Moridpour. 2011. Prediction intervals to account for uncertainties in neural network predictions: Methodology and application in bus travel time prediction. Engineering Applications of Artificial Intelligence 24 (3):534–42. doi:10.1016/j.engappai.2010.11.004
  • Mitchell, D., P. Brockett, R. Mendoza-Arriaga, and K. Muthuraman. 2013. Modeling and forecasting mortality rates. Insurance: Mathematics and Economics 52 (2):275–85. doi:10.1016/j.insmatheco.2013.01.002
  • Nair, V., and G. Hinton. 2010. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on International Conference on Machine Learning, 807–14. Madison, WI: Omnipress.
  • Nigri, A., E. Barbi, and S. Levantesi. 2021. The relationship between longevity and lifespan variation. Statistical Methods and Applications. doi:10.1007/s10260-021-00584-4
  • Nigri, A., S. Levantesi, and M. Marino. 2020. Life expectancy and lifespan disparity forecasting: A long short-term memory approach. Scandinavian Actuarial Journal 2:110–33.
  • Nigri, A., S. Levantesi, M. Marino, S. Scognamiglio, and F. Perla. 2019. A deep learning integrated Lee-Carter model. Risks 7 (1):33.
  • Nix, D. A., and A. S. Weigend. 1994. Estimating the mean and variance of the target probability distribution. In Proceeding of IEEE International Conference on Neural Networks, vol. 1, 55–60. Washington DC, U. S.: IEEE Computer Society Press.
  • Oeppen, J., and J. W. Vaupel. 2006. The linear rise in the number of our days. In Perspectives on mortality forecasting. III: The linear rise in life expectancy: history and prospects, vol. 3, ed. T. Bengtsson, 9–18. Stockholm: Swedish Social Insurance Agency.
  • Pascanu, R., T. Mikolov, and Y. Bengio. 2013. On the difficulty of training recurrent neural networks. In Proceedings of Machine Learning Research 28 (3): vol. 28, 1310–18.
  • Perla, F., R. Richman, S. Scognamiglio, and M. Wüthrich. 2021. Time-series forecasting of mortality rates using deep learning. Scandinavian Actuarial Journal 7:572–98.
  • Plat, R. 2009. On stochastic mortality modeling. Insurance: Mathematics and Economics 45:393–404. doi:10.1016/j.insmatheco.2009.08.006
  • R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Rau, R., E. Soroko, D. Jasilionis, and J. W. Vaupel. 2008. Continued reductions in mortality at advanced ages. Population and Development Review 34:747–68. doi:10.1111/j.1728-4457.2008.00249.x
  • Renshaw, A. E., and S. Haberman. 2006. A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insurance: Mathematics and Economics 38 (3):556–70. doi:10.1016/j.insmatheco.2005.12.001
  • Richman, R., and M. V. Wüthrich.. 2021. A neural network extension of the Lee-Carter model to multiple populations. Annals of Actuarial Science 15 (2):346–66.
  • Rumelhart, D., G. Hinton, and R. Williams. 1986. Learning representations by back-propagating errors. Nature 323:533–36. doi:10.1038/323533a0
  • Schäfer, A. M., and H. G. Zimmermann. 2007. Recurrent neural networks are universal approximators. International Journal of Neural Systems 17 (4):253–63. doi:10.1142/S0129065707001111
  • Schnürch, S., and R. Korn. 2021. Point and interval forecasts of death rates using neural networks. ASTIN Bulletin 8 (52):333–60.
  • Tibshirani, R. 1996. A comparison of some error estimates for neural network models. Neural Computation 8:152–63. doi:10.1162/neco.1996.8.1.152
  • Villegas, A. M., V. K. Kaishev, and P. Millossovich. 2018. StMoMo: An R Package for Stochastic Mortality Modeling. Journal of Statistical Software 84 (3):1–38. doi:10.18637/jss.v084.i03
  • Wild, C. J., and G. A. F. Seber. 1989. Nonlinear regression. New York: Wiley.
  • Zhou, Z. H., J. Wu, and W. Tang. 2002. Ensembling neural networks: Many could be better than all. Artificial Intelligence 137 (1–2):239–63. doi:10.1016/S0004-3702(02)00190-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.