1,305
Views
0
CrossRef citations to date
0
Altmetric
Feature Articles

The Automated Bias-Corrected and Accelerated Bootstrap Confidence Intervals for Risk Measures

ORCID Icon & ORCID Icon

References

  • Beirlant, J., Y. Goegebeur, J. Segers, and J. L. Teugels. 2004. Statistics of extremes: Theory and applications. Chichester, West Sussex: John Wiley & Sons.
  • Blostein, M., and T. Miljkovic. 2019. On modeling left-truncated loss data using mixtures of distributions. Insurance: Mathematics and Economics 85:35–46.
  • Blostein, M., and T. Miljkovic. 2021. ltmix: Left-truncated mixtures of Gamma, Weibull, and Lognormal distributions. R package version 0.2.1. https://CRAN.R-project.org/package=ltmix
  • Brazauskas, V., B. L. Jones, M. L. Puri, and R. Zitikis. 2008. Estimating conditional tail expectation with actuarial applications in view. Journal of Statistical Planning and Inference 138 (11):3590–604.
  • Brazauskas, V., B. L. Jones, and R. Zitikis. 2009. Robust fitting of claim severity distributions and the method of trimmed moments. Journal of Statistical Planning and Inference 139 (6):2028–43.
  • Brazauskas, V., and T. Kaiser. 2004. “Empirical estimation of risk measures and related quantities,” Bruce L. Jones and Ricărdas Zitikis, October 2003. North American Actuarial Journal 8 (3):114.
  • DasGupta, A. 2008. Asymptotic theory of statistics and probability. Vol. 180. New York, NY: Springer.
  • DiCiccio, T. J., and B. Efron. 1996. Bootstrap confidence intervals. Statistical Science 11 (3):189–228.
  • Efron, B. 1979. Bootstrap methods: Another look at the jackknife. The Annals of Statistics 7 (1):1–26.
  • Efron, B. 1987. Better bootstrap confidence intervals. Journal of the American Statistical Association 82 (397):171–85.
  • Efron, B., and T. Hastie. 2016. Computer age statistical inference. Vol. 5. New York, NY: Cambridge University Press.
  • Efron, B., and B. Narasimhan. 2020a. The automatic construction of bootstrap confidence intervals. Journal of Computational and Graphical Statistics 29 (3):608–19.
  • Efron, B., and B. Narasimhan. 2020b. bcaboot: Bias corrected bootstrap confidence intervals. R package version 0.2-3. https://CRAN.R-project.org/package=bcaboot
  • Gilbert, P., and R. Varadhan. 2019. numDeriv: Accurate numerical derivatives. R package version 2016.8-1.1. https://CRAN.R-project.org/package=numDeriv
  • Gnedenko, B. V. 1950. Kurs teorii veroyatnostyey [Probability theory course]. Moscow: Gosudarstvennoye Izdatyel’stvo Technico-Teoreticheskoi Literaturi.
  • Grün, B., and T. Miljkovic. 2019. Extending composite loss models using a general framework of advanced computational tools. Scandinavian Actuarial Journal 2019 (8):642–60.
  • Hogg, R. V., J. McKean, and A. T. Craig. 2005. Introduction to mathematical statistics. Upper Saddle River, NJ: Pearson Education.
  • Hosking, J. R., and J. R. Wallis. 1987. Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29 (3):339–49.
  • Kaiser, T., and V. Brazauskas. 2006. Interval estimation of actuarial risk measures. North American Actuarial Journal 10 (4):249–68.
  • Kelley, K. 2005. The effects of nonnormal distributions on confidence intervals around the standardized mean difference: Bootstrap and parametric confidence intervals. Educational and Psychological Measurement 65 (1):51–69.
  • Kim, J. H. T., and M. R. Hardy. 2007. Quantifying and correcting the bias in estimated risk measures. ASTIN Bulletin 37 (2):365–86.
  • Klugman, S. A., H. H. Panjer, and G. E. Willmot. 2012. Loss models: From data to decisions. 4th ed. Hoboken, NJ: John Wiley & Sons.
  • Loomis, L. H., and S. Sternberg. 1968. Advanced calculus. Reading, Massachusetts: Addison-Wesley.
  • Manistre, J. B., and G. H. Hancock. 2005. Variance of the CTE estimator. North American Actuarial Journal 9 (2):129–56.
  • Micceri, T. 1989. The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin 105 (1):156–66.
  • Miljkovic, T., R. Causey, and M. Jovanović. 2022. Assessing the performance of confidence intervals for high quantiles of Burr XII and inverse Burr mixtures. Communications in Statistics – Simulation and Computation 51 (8):4677–99.
  • Miljkovic, T., and B. Grün. 2016. Modeling loss data using mixtures of distributions. Insurance: Mathematics and Economics 70:387–96.
  • Miljkovic, T., and B. Grün. 2021. Using model averaging to determine suitable risk measure estimates. North American Actuarial Journal 25 (4):562–79.
  • Necir, A., A. Rassoul, and R. Zitikis. 2010. Estimating the conditional tail expectation in the case of heavy-tailed losses. Journal of Probability and Statistics 2010:1–17.
  • Poudyal, C. 2021. Robust estimation of loss models for lognormal insurance payment severity data. ASTIN Bulletin 51 (2):475–507.
  • R Core Team. 2021. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
  • Reynkens, T., R. Verbelen, J. Beirlant, and K. Antonio. 2017. Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions. Insurance: Mathematics and Economics 77:65–77.
  • Serfling, R. 1980. Approximation theorems of mathematical statistics. New York: Wiley.
  • Tibshirani, R. 1988. Variance stabilization and the bootstrap. Biometrika 75 (3):433–44.
  • Tucker, H. G. 1959. A generalization of the Glivenko-Cantelli theorem. The Annals of Mathematical Statistics 30 (3):828–30.
  • Verbelen, R., L. Gong, K. Antonio, A. Badescu, and S. Lin. 2015. Fitting mixtures of Erlangs to censored and truncated data using the EM algorithm. ASTIN Bulletin 45 (3):729–58.