Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 49, 2014 - Issue 10
265
Views
12
CrossRef citations to date
0
Altmetric
ARTICLES

Adsorption of bacteriophage MS2 to magnetic iron oxide nanoparticles in aqueous solutions

, , , &
Pages 1116-1124 | Received 25 Nov 2013, Published online: 20 May 2014

References

  • Rao, V.C.; Sullivan, R.; Read, R.B.; Clarke, N.A. A simple method for concentrating and detecting viruses in water. J. Amer. Water Work. Assoc. 1968, 60, 1288–1294.
  • Bitton, G.; Mitchell, R. The removal of Escherichia coli bacteriophage T7 by magnetic filtration. Water Res. 1974, 8, 549–551.
  • Atherton, J.G.; Bell, S.S. Adsorption of viruses on magnetic particles- II: degradation of MS2 bacteriophage and the effect of cations, clay and polyelectrolyte. Water Res. 1983, 17, 943–948.
  • Atherton, J.G.; Bell, S.S. Adsorption of viruses on magnetic particles-I: adsorption of MS2 bacteriophage by adsorption to magnetite. Water Res. 1983, 17, 949–953.
  • Brown, J.; Sobsey, M.D. Ceramic media amended with metal oxide for the capture of viruses in drinking water. Environ. Technol. 2009, 30, 379–391.
  • Rao, V.C.; Waghmare, S.V.; Lakhe, S.B. Detection of viruses in drinking water by concentration on magnetic iron oxide. Appl. Environ. Microbiol. 1981, 42, 421–426.
  • Bitton, G.; Pancorbo, O.; Gifford, G.E. Factors affecting the adsorption of polio virus to magnetite in water and wastewater. Water Res. 1976, 10, 978–980.
  • Moore, R.S.; Taylor, D.H.; Sturman, L.S.; Reddy, M.M.; Fuhs, G.W. Poliovirus adsorption by 34 minerals and soils. Appl. Environ. Microbiol. 1981, 42, 963–975.
  • Chattopadhyay, D.; Chattopadhyay, S.; Lyon, W.G.; Wilson, J.T. Effect of surfactants on the survival and sorption of viruses. Environ. Sci. Technol. 2002, 36, 4017–4024.
  • Moore, R.S.; Taylor, D.H.; Sturman, L.S.; Reddy, M.M.; Sturman, L.S. Adsorption of reovirus by minerals and soils. Appl. Environ. Microbiol. 1982, 44, 852–859.
  • Li, X.M.; Xu, G.; Liu, Y.; He, T. Magnetic Fe3O4 nanoparticles: Synthesis and application in water treatment. Nanosci. Nanotechnol.-Asia. 2011, 1, 14–24.
  • Ashuha, S.; Suyala, B.; Zhao, S. Porous structure and Cr(VI) removal abilities of Fe3O4 prepared from Fe–urea complex. Mater. Chem. Phys. 2011, 129, 483–487.
  • Okamoto, T.; Tachibana, S.; Miura, O.; Takeuchi, M. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents. Phys. C 2011, 471, 1516–1519.
  • Wang, J.; Zheng, S.; Shao, Y.; Liu, J.; Xu, Z.; Zhu, D. Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J. Colloid Interf. Sci. 2010, 349, 293–299.
  • Badruddoza, A. Z. M.; Tay, A. S. H.; Tan, P. Y.; Hidajat, K.; Uddin, M. S. Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies. J. Hazard. Mater. 2011, 185, 1177–1186.
  • Zhao, X.; Wang, J.; Wu, F.; Wang, T.; Cai, Y.; Shi, Y.; Jiang, G. Removal of fluoride from aqueous media by Fe3O4@Al(OH)3 magnetic nanoparticles. J. Hazard. Mater. 2010, 173, 102–109.
  • Yavuz, C.T.; Mayo, J.T.; Suchecki, C.; Wang, J.; Ellsworth, A.Z.; D’couto, H.; Quevedo, E.; Prakash, A.; Gonzalez, L.; Nguyen, C.; Kelty, C.; Colvin, V.L. Pollution magnet: Nano-magnetite for arsenic removal from drinking water. Environ. Geochem. Health 2010, 32, 327–334.
  • Chowdhury, S.R.; Yanful, E.K. Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. J. Environ. Manage. 2010, 91, 2238–2247.
  • Raciny, I.; Zodrow, K.R.; Li, D.; Li, Q.; Alvarez, J.J. Addition of a magnetite layer onto a polysulfone water treatment membrane to enhance virus removal. Water Sci. Technol. 2011, 63, 2346–2352.
  • Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transact. Magnet. 1981, 17, 1247–1248.
  • Matei, E.; Vasile, E.; Predescu, A. Properties of magnetic iron oxides used as materials for wastewater treatment. J. Phys. Confer. Ser. 2011, 304, 012022.
  • Adams, M.H. Bacteriophages. Interscience Publishers: New York, 1959.
  • American Public Health Association (APHA), American Water Works Association (AWWA), and Water Pollution Control Federation (WPCF). Standard Methods for the Examination of Water and Wastewater. APHA: Washington, DC, 1981.
  • Horner, O.; Neveu, S.; Montredon, S.; Siaugue, J.M.; Cabuil, V. Hydrothermal synthesis of large maghemite nanoparticles: influence of the pH on the particle size. J. Nanopart. Res. 2009, 11, 1247–1250.
  • Gilbert, F.; Refait, P.; Lévêque, F.; Remazeilles, C.; Conforto, E. Synthesis of goethite from Fe(OH)2 precipitates: influence of Fe(II) concentration and stirring speed. J. Phys. Chem. Solid. 2009, 69, 1–27.
  • Yu, C.H.; Al-Saadi, A.; Shih, S.J.; Qiu, L.; Tam, K.Y.; Tsang, S.C. Immobilization of BSA on silica-coated magnetic iron oxide nanoparticle. J. Phys. Chem. C 2009, 113, 537–543.
  • Hu, L.; Hach, D.; Chaumont, D.; Brachais, C.H.; Couvercelle, J.P. One step grafting of monomethoxy poly(ethylene glycol) during synthesis of maghemite nanoparticles in aqueous medium. Coll. Surf. A 2008, 330, 1–7.
  • Darezereshki, E. Synthesis of maghemite (γ-Fe2O3) nanoparticles by wet chemical method at room temperature. Mater. Lett. 2010, 64, 1471–1472.
  • Hu, L.; Percheron, A.; Chaumont, D.; Brachais, C.H. Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: magnetite, maghemite and hematite. J. Sol-Gel Sci. Technol. 2011, 60, 198–205.
  • Gutierrez, L.; Li, X.; Wang, J.; Nangmenyi, G.; Economy, J.; Kuhlenschmidt, T.B.; Kuhlenschmidt, M.S.; Nguyen, T.H. Adsorption of rotavirus and bacteriophage MS2 using glass fiber coated with hematite nanoparticles. Water Res. 2009, 43, 5198–5208.
  • Katagiri, S.; Aikawa, S.; Hinuma, Y. Stepwise degradation of poliovirus capsid by alkaline treatment. J. Gen. Virol. 1971, 13, 101–109.
  • Salo, R.J.; Cliver, D.O. Effect of acid pH, salts, and temperature on the infectivity and physical integrity of enterovirus. Arch. Virol. 1976, 52, 269–282.
  • Feng, X.Y.; Ong, S.L.; Hu, J.Y.; Tan, X.L.; Ng, W.J. Effects of pH and temperature on the survival of coliphages MS2 and Qβ. World J. Microbiol. Biotechnol. 2003, 30, 549–552.
  • Jin, Y.; Chu, Y.; Li, Y. Virus removal and transport in saturated and unsaturated sand columns. J. Contam. Hydrol. 2000, 43, 111–128.
  • Schulze-Makuch, D.; Bowman, R.S.; Pillai, S.D.; Guan, H. Field evaluation of the effectiveness of surfactant modified zeolite and iron-oxide-coated sand for removing viruses and bacteria from ground water. Groundwater Monit. Remedi. 2003, 23, 68–75.
  • Guan, H.; Schulze-Makuch, D.; Schaffer, S.; Pillai, S.D. The effect of critical pH on virus fate and transport in saturated porous medium. Ground Water. 2003, 41, 701–708.
  • Zerda, K.S. Adsorption of Viruses to Charge-Modified Silica. Ph.D. dissertation, Baylor College of Medicine, Waco, Texas, 1982.
  • Zhuang, J.; Jin, Y. Interaction between viruses and goethite during saturated flow: Effects of solution pH, carbonate, and phosphate. J. Contam. Hydrol. 2008, 98, 15–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.