Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 49, 2014 - Issue 12
569
Views
56
CrossRef citations to date
0
Altmetric
ARTICLES

Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles

, , , &
Pages 1361-1369 | Received 05 Feb 2014, Published online: 29 Jul 2014

References

  • Martin, I.; De Burca, R; Morgan, H. Soil guideline values for inorganic arsenic in soil. Science Report SC050021/arsenic SGV and Hannah Morgan. Environment Agency. 2009, Bristol. Available at http: //www.environment-agency.gov.uk/static/documents/Research/SCHO0409BPVY-e-e.pdf (accessed Jan 2014).
  • Ruiz-Chancho, M.J.; López-Sánchez, J.F.; Rubio, R. Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining. Anal. Bioanal. Chem. 2007, 387, 627–635.
  • Smith, E.; Naidu, R.; Alston, A.M. Arsenic in the soil environment: A review. Adv. Agron. 1998, 64, 149–195.
  • Larios, R.; Fernández-Martínez, R.; LeHecho, I.; Rucandio, I. A methodological approach to evaluate arsenic speciation and bioaccumulation in different plant species from two highly polluted mining areas. Sci. Total Environ. 2012, 414, 600–607.
  • Moreno-Jiménez, E.; Esteban, E.; Peñalosa, J.M. The fate of arsenic in soil-plant systems. Rev. Environ. Contam. Toxicol. 2012, 215, 1–37.
  • Mench, M.; Schwitzguébel, J.P.; Schroeder, P.; Bert, V.; Gawronski, S.; Gupta, S. Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification, and sequestration, and consequences to food safety. Environ. Sci. Pollut. Res. 2009, 16, 876–900.
  • Kumpiene, J.; Ore, S.; Renella, G.; Mench, M.; Lagerkvist, A.; Maurice, C. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ. Pollut. 2006, 144, 62–69.
  • Kim, J.Y.; Davis, A.P.; Kim, K. W. Stabilization of available arsenic in highly contaminated mine tailings using iron. Environ. Sci. Technol. 2003, 37, 189–195.
  • Hartley, W., Lepp, N.W. Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Sci. Total Environ. 2008, 390, 35–44.
  • Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – a review. Waste Manag. 2008, 28, 215–225.
  • Komárek, M.; Vaněk, A.; Ettler, V. Chemical stabilization of metals and arsenic in contaminated soils using oxides. A review. Environ. Pollut. 2013, 172, 9–22.
  • Zhang, W. Nanoscale iron particles for environmental remediation: An overview. J. Nanopar. Res. 2003, 5, 323–332.
  • Zhuang, Y.; Jin, L.; Luthy, L.G. Kinetics and pathways for the debromination of polybrominated diphenyl ethers by bimetallic and nanoscale zerovalent iron: Effects of particle properties and catalyst. Chemosphere 2012, 89, 426–432.
  • Li, X.; Zhang, W. Sequestration of metal cations with zerovalent iron nanoparticles–A study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J. Phys. Chem. C 2007, 111, 6939–6946.
  • Xu, Y.; Zhao, D. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res. 2007, 41, 2010–2108.
  • Klimkova, S.; Cernik, M.; Lacinova, L.; Filip, J.; Jancik, D.; Zboril, R. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere 2011, 82, 1178–1184.
  • Gil-Díaz, M.; Pérez-Sanz, A.; Vicente, M.A.; Lobo, M.C. Immobilisation of Pb and Zn in soils using stabilised zero-valent iron nanoparticles. Effects on soil properties. Clean Soil Air Water 2014. DOI: 10.1002/clen.201300730
  • Jegadeesan, G.; Mondal, K.; Lalvani, S.B. Arsenate remediation using nanosized modified zerovalent iron particles. Environ. Prog. 2005, 24(3), 289–296.
  • Kanel, S.R.; Grenèche, J.M.; Choi, H. Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 2006, 40, 2045–2050.
  • De, D.; Mandal, S.M.; Bhattacharya, J.; Ram, S.; Roy, S.K. Iron oxide nanoparticle-assisted arsenic removal from aqueous system. J. Environ. Sci. Health A 2009, 44(2), 155–162.
  • Zhang, M.Y.; Wang, Y.; Zhao, D.Y.; Pan, G. Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles. Chin. Sci. Bull. 2010, 55, 365–372.
  • Shipley, H.J.; Engates, K.E.; Guettner, A.M. Study of iron oxide nanoparticles in soil for remediation of arsenic. J. Nanopart. Res. 2011, 13, 2387–2397.
  • An, B.; Zhao, D. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe–Mn oxide nanoparticles. J. Hazard. Mater. 2012, 211–212, 332–341.
  • Gyuricza, V.; Fodor, F.; Szigeti, Z. Phytotoxic Effects of heavy metal contaminated soil reveal limitations of extract-based ecotoxicological tests. Water Air Soil Pollut. 2010, 210, 113–122.
  • Zucconi, F.; Monaco, A.; Forte, M.; De Bertoldi, M. Phytotoxins during the stabilization of organic matter. In Composting of agricultural and other wastes; Gasser, J.K.R., Ed.; Elsevier: London, 1985; 73–85.
  • Devesa-Rey, R.; Moldes, A.B.; Díaz-Fierros, F.; Barral, M.T. Toxicity of Anllóns River sediment extracts using microtox and the Zucconi Phytotoxicity Test. Bull. Environ. Contam. Toxicol. 2008, 80, 225–230.
  • Boluda, R.; Roca-Pérez, L.; Marimón, L. Soil plate bioassay: An effective method to determine ecotoxicological risks. Chemosphere 2011, 84, 1–8.
  • Sierra, C.; Menéndez-Aguado, J.M.; Afif, E.; Carrero, M.; Gallego, J.R. Feasibility study on the use of soil washing to remediate the As-Hg contamination at an ancient mining and metallurgy area. J. Hazard. Mater. 2011, 196, 93–100.
  • MAPA. Métodos Oficiales de Análisis, vol. III, Secretaría General Técnica Ministerio de Agricultura, Pesca y Alimentación: Madrid, 1994; 219–324.
  • Monnier, G.; Stengel, P.; Fies, J.C. Une Méthode de Mesure de la Densité Apparente de Petits Agglomérats Terreux: Application a l’analyse des Systèmes de Porosité du Sol. Ann. Agron. 1973, 24, 533–545.
  • Jackson, M.L.; Lim, C.H.; Zelazny, L.W. Methods of Soil Analysis. Part 1; Klute, A., Ed.; Soil Science Society of America: Madison, WI, 1986; 101–150.
  • Tessier, A.; Campbell, P.G.C.; Bisson, M. Oxides, hydroxides, and aluminosilicates. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–850.
  • US Environmental Protection Agency (US EPA). Method 1311: Toxicity characteristic leaching procedure. USEPA: USA, 1992. Available at http: //www.epa.gov/waste/hazard/testmethods/sw846/online/index.htm#table (accessed Jan 2014).
  • BOPA, Boletín Oficial del Principado de Asturias, 91, April 21, 2014. Generic reference levels for heavy metals in soils from Principality of Asturias, Spain. Available at https://sede.asturias.es/portal/site/Asturias/menuitem.1003733838db7342ebc4e191100000f7/? vgnextoid=d7d79d16b61ee010VgnVCM1000000100007fRCRD&fecha=21/04/2014&refArticulo=2014-(accessed July 2014)
  • Orden 2770/2006, August 11, 2006, Comunity of Madrid. Generic reference levels of heavy metals and other trace elements in contaminated soils from the Comunity of Madrid.
  • DEFRA, Department for Environment, Food & Rural Affairs, 2002. Soil Guideline Values for Arsenic Contamination. Available from The R&D Dissemination Centre. WRc plc, Swindon, Wilts, UK.
  • VROM, Netherlands Ministry of Housing, Spatial Planning and the Environment, 2009. Soil Remediation Circular. The Netherlands. Available at http://www.esdat.com.au/Environmental%20Standards/Dutch/ENGELSE %20versie%20circulaire%20Bodemsanering%202009.pdf (accessed Jan 2014).
  • Kumpiene, J.; Fitts, J.P.; Mench, M. Arsenic fractionation in mine spoils 10 years after aided phytostabilization. Environ. Pollut. 2012, 166, 82–88.
  • Ritcey, G.M. Tailings management in gold plants. Review article. Hydrometallurgy 2005, 78, 3–20.
  • Lin, D.H.; Xing, B.S. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007, 150, 243–250.
  • Barrena, R.; Casals, E.; Colón, J.; Font, X.; Sánchez, A.; Puntes, V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 2009, 75(7), 850–857.
  • El-Temsah, Y.S.; Joner, E.J. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol. 2012, 27, 42–49.
  • Emino, E.R.; Warman, P.R. Biological assay for compost quality. Compost Sci. Util. 2004, 12(4), 342–348.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.