Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 49, 2014 - Issue 13
139
Views
4
CrossRef citations to date
0
Altmetric
ARTICLES

Variation in composition and relative content of accumulated photopigments in a newly isolated Rhodobacter capsulatus strain XJ-1 in response to arsenic

, , , &
Pages 1493-1500 | Received 27 Feb 2014, Published online: 19 Aug 2014

References

  • Merulla, D.; Buffi, N.; Beggah, S.; Truffer, F.; Geiser, M.; Renaud, P.; Van der Meer, J.R. Bioreporters and biosensors for arsenic detection. Biotechnological solutions for a world-wide pollution problem. Curr. Opin. Biotechnol. 2013, 24(3), 534–541.
  • Kulp, T.R.; Hoeft, S.E.; Asao, M.; Madigan, M.T.; Hollibaugh, J.T.; Fisher, J.C.; Stolz, J.F.; Culbertson, C.W.; Miller, L.G.; Oremland, R.S. Arsenic (III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science. 2008, 321(5891), 967–970.
  • Harada, J.; Mizoguchi, T.; Yoshida, S.; Isaji, M.; Oh-Oka, H.; Tamiaki, H. Composition and localization of bacteriochlorophyll a intermediates in the purple photosynthetic bacterium Rhodopseudomonas sp. Rits. Photosynth. Res. 2008, 95(2–3), 213–221.
  • Metz, S.; Jager, A.; Klug, G. In vivo sensitivity of blue-light-dependent signaling mediated by AppA/PpsR or PrrB/PrrA in Rhodobacter sphaeroides. J. Bacteriol. 2009, 191(13), 4473–4477.
  • Pandey, R.; Flockerzi, D.; Hauser, M. J.; Straube, R. An extended model for the repression of photosynthesis genes by the AppA/PpsR system in Rhodobacter sphaeroides. FEBS J. 2012, 279(18), 3449–3461.
  • Yin, L.; Dragnea, V.; Feldman, G.; Hammad, L.A.; Karty, J.A.; Dann, C.E.; Bauer, C.E. Redox and light control the heme-sensing activity of AppA. MBio. 2013, 4(5), e00563-13.
  • Fujimoto, H.; Wakabayashi, M.; Yamashiro, H.; Maeda, I.; Isoda, K.; Kondoh, M.; Kawase, M.; Miyasaka, H.; Yagi, K. Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum. Rhodovulum sulfidophilum as an arsenite biosensor. Appl. Microbiol. Biotechnol. 2006, 73(2), 332–338.
  • Maeda, I.; Sakurai, H.; Yoshida, K.; Siddiki, M.; Shimizu, T.; Fukami, M.; Ueda, S. Monitoring of environmental arsenic by cultures of the photosynthetic bacterial sensor illuminated with a near-infrared light emitting diode array. J. Microbiol. Biotechnol. 2011, 21(12), 1306–1311.
  • Lien, S.; Pietro, S.; Gest, H. Mutational and physiological enhancement of photosynthetic energy conversion in Rhodopseudomonas capsulata. Proc. Nat. Acad. Sci. USA 1971, 68(8), 1912–1915.
  • Ormerod, J.G.; Ormerod, K.S.; Gest, H. Light dependent utilization of organiccompounds and photoproduction of molecular hydrogen by photosynthetic bacteria: Relationships with nitrogen metabolism. Arch. Biochem. Biophys. 1961, 94, 449–463.
  • Zhao, L.; Zhao, C.; Han, D.; Yang, S.; Chen, S.; Yu, C.P. Anaerobic utilization of phenanthrene by Rhodopseudomonas palustris. Biotechnol. Lett. 2011, 33(11), 2135–2140.
  • Pfennig, N.; Trüper, H. G. The family Chromatiaceae. In The Prokaryotes. A Handbook on the Biology of Bacteria. Ecophysiology, Isolation, Identification, Applications; Balows, A.; Trüper, H.G.; Dworkin, M.; Harder, W.; Schleifer, K.H.; Eds.; Springer Press: New York, 1992; 3200–3221.
  • Imhoff, J.F.; Süling, J.; Petri, R. Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the alpha-Proteobacteria description of the new genera Phaeospirillum gen. nov. Rhodovibrio gen. nov. Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov. of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov. of Rhodospirillum salinarum to Rhodovibrio salinarum comb. nov. of Rhodospirillum sodomense to Rhodovibrio sodomensis comb. nov. of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int. J. Syst. Bacteriol. 1998, 48(3), 793–798.
  • Imhoff, J.F.; Pierre, C. Recommended standards for the description of new species of anoxygenic phototrophic bacteria. Int. J. Syst. Bacteriol. 2004, 54(4), 1415–1421.
  • Lü, C.; Zhang, Y.; Zhao, C.; Guo, S.; Yang, S.; Chen, S. Arsenic resistance mechanisms in Rhodopseudomonas palustris under anaerobic and light conditions. Acta Scient Circumstant 2012, 32(10), 2375–2383.
  • Zhuo, M.Q.; Zhao, C.G.; Cheng, Q.R.; Yang, S.P.; Qu, Y.B. Fingerprinting analysis of photopigments in purple bacteria. Acta Microbiol. Sinica 2012, 52(6), 760–768.
  • Imhoff, J.F. Genus Rhodobacter. In Bergey's Manual of Systematic Bacteriology; Brenner, D.J.; Krieg, N.R.; Staley, J.T.; Garrity, G.M., Eds.; Springer Press: New York, 2005; 161–167.
  • Igeño, M.I.; Moral, C.G.D.; Castillo, F.; Caballero, F.J. Halotolerance of the phototrophic bacterium Rhodobacter capsulatus E1F1 is dependent on the nitrogen source. Appl. Environ. Microbiol. 1995, 61(8), 2970–2975.
  • Takeuchi, M.; Kawahata, H.; Gupta, L.P.; Kita, N.; Morishita, Y.; Ono, Y.; Komai, T. Arsenic resistance and removal by marine and non-marine bacteria. J. Biotechnol. 2007, 127(3), 434–442.
  • Mizoguchi, T.; Harada, J.; Tamiaki, H. Structural determination of dihydro-and tetrahydrogeranylgeranyl groups at the 17-propionate of bacteriochlorophylls-a. FEBS Lett. 2006, 580(28–29), 6644–6648.
  • Mizoguchi, T.; Isaji, M.; Harada, J.; Tamiaki, H. Isolation and pigment composition of the reaction centers from purple photosynthetic bacterium Rhodopseudomonas palustris species. Biochim. Biophys. Acta (BBA)-Bioenergetics. 2012, 1817(3), 395–400.
  • Takaichi, S.; Jung, D.O.; Madigan, M.T. Accumulation of unusual carotenoids in the spheroidene pathway demethylspheoridene and demethylspheroidenone in an alkaliphilic purple nonsulfur bacterium Rhodobaca bogoriensis. Photosynth. Res. 2001, 67(3), 207–214.
  • Yeliseev, A.A.; Eraso, J.M.; Kaplan, S. Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability. J. Bacteriol. 1996, 178(20), 5877–5883.
  • Shinichi, T. Distribution and biosynthesis of carotenoids. In The Purple Phototrophic Bacteria; Hunter, C.N.; Daldal, F.; Thurnauer, M.C.; Beatty, J.T.; Eds.; Springer Press: New York, 2008; 97–114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.