Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 49, 2014 - Issue 13
483
Views
25
CrossRef citations to date
0
Altmetric
ARTICLES

Influence of parameters on the photocatalytic degradation of phenolic contaminants in wastewater using TiO2/UV system

, , &
Pages 1542-1552 | Received 02 Apr 2014, Published online: 19 Aug 2014

References

  • Eriksson, E.; Baun, A.; Mikkelsen, P.S.; Ledin, A. Risk assessment of xenobiotics in stormwater discharged to Harrestup Ao, Denmark. Desalination 2007, 215, 187–197.
  • Zhang, F.; Li, M.; Li, W.; Feng, C.; Xu, Y.J.; Guo, J.C. Degradation of phenol by a combined independent photocatalytic and electrochemical process. Chem. Eng. J. 2011, 175, 349–355.
  • Ahmed, S.; Rasul, M.G.; Brown, R.; Hashib, M.A. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review. J. Environ. Manag. 2011, 92, 311–330.
  • Ahmed, S.; Rasul, M.; Martens, W.; Brown, R.; Hashib, M. Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination. 2010, 261, 3–18.
  • Barakat, M.A.; Al-Hutailah, R.I.; Qayyum, E.; Rashid, J.; Kuhn, J.N. Pt nanoparticles/TiO2 for photocatalytic degradation of phenols in wastewater. Environ. Technol. 2014, 35, 137–144.
  • Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1, 1–21.
  • Gaya, U.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C: Photochem. Rev. 2008, 9, 1–12.
  • Friedmann, D.; Mendive, C.; Bahnemann, D. TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B: Environ. 2010, 99, 398–406.
  • Lathasree, S.; Rao, A.N.; SivaSankar, B.; Sadasivam, V.; Rengaraj, K. Heterogeneous photocatalytic mineralization of phenols in aqueous solutions. J. Mol. Catal. A: Chem. 2004, 223, 101–105.
  • Maa, B.J.; Kim, J.S.; Choi, C.H.; Woo, S.I. Enhanced hydrogen generation from methanol aqueous solutions over Pt/MoO3/TiO2 under ultraviolet light. Int. J. Hydrogen Energy 2013, 38, 3582- 3587.
  • Sakthivel, S.; Kisch, H. Photocatalytic and photoelectrochemical properties of nitrogen- doped titanium dioxide. Chem. Phys. Chem. 2003, 4, 487–490.
  • Chen, D.; Ray, A.K. Photodegradation kinetics of 4-nitrophenol in TiO2 suspension. Water Sci. Technol. 1998, 32, 3223–3234.
  • Okomoto, K.I.; Yamamoto, Y.; Tanaka, H.; Tanaka, M.; Itaya, A. Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. Bull. Chem. Soc. Jpn. 1985, 58, 2015–2022.
  • Gunlazuardia, J.; Lindub, W.A. Photocatalytic degradation of pentachlorophenol in aqueous solution employing immobilized TiO2 supported on titanium metal. J. Photochem. Photobiol. A: Chem. 2005, 173, 51–55.
  • Bickley, R.I.; Gonzalez-Carreno, T.; Lees, J.S.; Palmisano, L.; Tilley, R.J.D. A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem. 1991, 92, 178–190.
  • Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Morphology or a TiO2 photocatalyst (Degussa P-25) consisting of anatase and rutile crystalline phases. J. Catal. 2001, 203, 82–86.
  • APHA. Standard Method for the Examination of Water and Wastewater, 20th Ed.; American Public Health Association: Washington, DC, USA, 1998; 2120E.
  • Chu, W.; Wong, C.C. The photocatalytic degradation of dicamba in TiO2 suspension with the help of hydrogen peroxide by different near irradiation. Water Res. 2003, 38, 1037–1043.
  • Sobczynski, A.; Duczmal, L.; Zmudzinski, W. Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. J. Mol. Catal. A: Chem. 2004, 213, 225–230.
  • Naeem, K.; Feng, O. Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. J. Environ. Sci. 2009, 21, 527–533.
  • Turchi, C.S.; Ollis, D.F. Photocatalytic degradation of organic water contaminants: mechanism involving hydroxyl radical attack. J. Catal. 1990, 122, 178–192.
  • U.S. EPA. 1985 Health and environmental effects profile for aniline; U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC, Environmental Criteria and Assessment Office: Cincinnati, OH. ECAO-CIN-P136.
  • Pignatello, J.J. Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol. 1992, 26, 944–951.
  • Matthews, R.W. Hydroxylations reactions induced by near ultraviolet photolysis of aqueous titanium dioxide suspensions. J. Chem. Soc. Faraday Trans. 1984, 80, 457–474.
  • Bahemamm, D.; Henglein, A.; Lilie, J.; Spahnel, L. Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal TiO2. J. Phys. Chem. 1984, 88, 707–711.
  • Matthews, R.W. Photo-oxidation of organic material in aqueous suspension of titanium dioxide. Water Res. 1986, 20, 569–578.
  • Evgenidou, E.; Fytianos, K.; Poulios, I. Photocatalytic oxidation of dimethoate in aqueous solutions. J. Photochem. Photobiol. A: Chem. 2005, 175, 29–38.
  • Han, D.H.; Cha, S.Y.; Yang, H.Y. Improvement of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H2O2 process and kinetic study. Water Res. 2004, 38, 2782–2790.
  • Burns, A.; Li, W.; Baker, C.; Shah, S.I. Sol–gel synthesis and characterization of neodymium-ion doped nanostructured titania thin film. Mater. Res. Soc. Symp. Proc. 2002, 703, 193–198.
  • Bertelli, M.; Selli, E. Reaction paths and efficiency of photocatalysis on TiO2 and of H2O2 photolysis in the degradation of 2-chlorophenol. J. Hazard. Mater. 2006, 138, 46–52.
  • Chiou, C.H.; Wu, C.Y.; Juang, R.S. Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chem. Eng. J. 2008, 139, 322–329.
  • Thennarasu, G.; Sivasamy, A. Metal ion doped semiconductor metal oxide nanosphere particles prepared by soft chemical method and its visible light photocatalytic activity in degradation of phenol. Powder Technol. 2013, 250, 1–12.
  • Wang, K.H.; Hsiehb, Y.H.; Choub, M.Y.; Chang, C.Y. Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution. Appl. Catal. B: Environ. 1999, 21, 1–8.
  • Alhakimi, G.; Gebril, S.; Studnicki, H. Comparative photocatalytic degradation using natural and artificial UV-light of 4-chlorophenol as a representative compound in refinery wastewater. J. Photochem. Photobiol. A: Chem. 2003, 157, 103–109.
  • Adishkumar, S.; Kanmani, S.; Banu, J.R. Solar photocatalytic treatment of phenolic wastewaters: influence of chlorides, sulphates, aeration, liquid volume and solar light intensity. Desal. Water Treat. 2013, 1–7.
  • Akbal F.; Onar, A.N. Photocatalytic degradation of phenol. Environ. Monit. Assess. 2003, 83, 295–302.
  • Barakat, M.A.; Tseng, J.M.; Huang, C.P. Hydrogen peroxide-assisted photocatalytic oxidation of phenolic compounds. Appl. Catal. B: Environ. 2005, 59, 99–104.
  • Laoufi, N.A.; Tassalit, D.; Bentahar, F. The degradation of phenol in wastewater by TiO2 photocatalysis in a helical reactor. Global NEST J. 2008, 10, 404–418.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.