Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 49, 2014 - Issue 13
367
Views
28
CrossRef citations to date
0
Altmetric
ARTICLES

An integrated use of multiple biomarkers to investigate the individual and combined effect of copper and cadmium on the marine green mussel (Perna viridis)

, , &
Pages 1564-1577 | Received 10 Mar 2014, Published online: 19 Aug 2014

References

  • Mosleh, Y.Y.; Paris-Palacios, S.; Biagianti-Risbourg, S. Metallothioneins induction and antioxidative response in aquatic worms Tubifex tubifex (Oligochaeta, Tubificidae) exposed to copper. Chemosphere 2006, 64, 121–128.
  • Mzimela, H.M.; Wepener, V.; Cyrus, D.P. The sublethal effect of copper and lead on the haematology and acid–base balance of the groovy mullet, Lizza dumerili. Afr. J. Aquat. Sci. 2002, 27, 39–46.
  • Pandey, S.; Parvez, S.; Ansari, R.A.; Ali, M.; Kaur, M.; Hayat, F.; Ahmad, F.; Raisuddin, S. Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctata Bloch. Chem. Biol. Interact. 2008, 178, 183–192.
  • Leonard, S.S.; Harris, G.K.; Shi, X. Metal-induced oxidative stress and signal transduction. Free Rad. Biol. Med. 2004, 37, 1921–1942.
  • Halliwell, B. Reactive oxygen species and the central nervous system. J. Neurochem. 1992, 59, 1609–1623.
  • Carmen Casado-Martinez, M.; Smith, B.D.; Luoma, S.N.; Rainbow, P.S. Metal toxicity in a sediment dwelling polychaete: Threshold body concentrations or overwhelming accumulation rate? Environ. Pollut. 2010, 158, 3071–3076.
  • Stohs, S.J.; Hagchi, D.; Hassoun, E.; Bagshi, M. Oxidative mechanisms in the toxicity of chromium and cadmium ions. J. Environ. Pathol. Toxicol. Oncol. 2000, 19, 201–213.
  • Geret, F.; Serafim, A.; Barreira, L.; Bebianno, M.J. Effect of Cd on antioxidant enzymes in the gills of the clam Ruditapes decussatus. Biomarkers 2002, 7, 242–256.
  • Won, E.J.; Lee, J.S.; Lee, Y.M. Combined effects of cadmium and copper on the expression of antioxidant enzyme — coding genes in the polychaete, Perinereis nuntia. Toxicol. Environ. Health Sci. 2013, 5, 26–33.
  • Chandran, R.; Sivakumar, A.A.; Mohandass, S.; Aruchami, M. Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod. Achatina fulica. Comp. Biochem. Physiol. C. 2005, 140, 422–426.
  • Liu, H.; Wang, W.M.; Zhang, J.F.; Wang, X.R. Effects of copper and its ethylenediamine tetraacetate complex on the antioxidant defenses of the goldfish, Carassius auratus. Ecotoxicol. Environ. Saf. 2006, 65, 350–354.
  • Hoyle, I.; Shaw, B.J.; Handy, R.D. Dietary copper exposure in the African walking catfish, Clarias gariepinus: Transient osmoregulatory disturbances and oxidative stress. Aquat. Toxicol. 2007, 83, 62–72.
  • Shanmugavelu, M.; Baytan, M.R.; Chesnut, J.D.; Bonning, B.C. A novel protein that binds juvenile hormone esterase in fat body and pericardial cells of the tobacco hornworm Manduca sexta L. J. Biol. Chem. 2000, 275, 1802–1806.
  • Perez-Mendoza, J.; Fabrick, J.Á.; Zhu, K.Y.; Baker, J.E. Alterations in esterases are associated with malathion resistance in Hobrobracon hebetor (Hymenoptera: Braconidae). J. Econ. Entomol. 2002, 93, 31–37.
  • Nimmo, H.G. The tricarboxylic acid cycle and anaplerotic reactions. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology; Neidhardt, F.C.; Ingraham, J.L.; Low, K.B.; Magasanik, B.; Schaechter M.; Umbarger, H.E., Eds.; American Society for Microbiology: Washington, DC, 1987; 156–159.
  • Park, S.J.; Cotter, P.A.; Gunsalus, R.P. Regulation of Malate dehydrogenase (mdh) gene expression in Escherichia coli in response to oxygen, carbon, and heme. J. Bacteriol. 1995, 177, 6652–6656.
  • Oh, T.J.; Kim, I.G.; Park, S.Y.; Kim, K.C.; Shim, H.W. NAD-dependent malate dehydrogenase protects against oxidative damage in Escherichia coli K-12 through the action of oxaloacetate. Environ. Toxicol. Phar. 2002, 11, 9–14.
  • Janaki Devi, V.; Nagarani, N.; Yokesh Babu, M.; Kumaraguru, A.K.; Ramakritinan, C.M. A study of proteotoxicity and genotoxicity induced by the pesticide and fungicide on marine invertebrate (Donax faba). Chemosphere 2013, 90, 1158–1166.
  • Amiard, C.; Amiard-Triquet, C.; Barka, S.; Pellerin, J.; Rainbow, P.S. Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat. Toxicol. 2006, 76, 160–202.
  • Viarengo, A.; Burlando, B.; Ceratto, N.; Panfoli, I. Antioxidant role of metallothioneins: A comparative overview. Cell. Mol. Biol. 2000, 46, 407–417.
  • Yap, C.K.; Ismail, A.; Omar, H.; Tan, S.G. Toxicities and tolerances of Cd, Cu, Pb and Zn in primary producer (Isochrysis galbana) and in a primary consumer (Perna viridis). Environ. Int. 2004, 29, 1097–1104.
  • Vlahogianni, T.H.; Valavanidis, A. Heavy-metal effects on lipid peroxidation and antioxidant defense enzymes in mussels Mytilus galloprovincialis. Chem. Ecol. 2007, 23, 361–371.
  • Gomes, T.; Araujo, O.; Pereira, R.; Almeida, A.C.; Cravo, A.; Bebianno, M.J. Genotoxicity of copper oxide and silver nanoparticles in the mussels Mytilus galloprovincialis. Mar. Environ. Res. 2013, 84, 51–59.
  • Rank, J.; Jensen, K.; Jespersen, P.H. Monitoring DNA damage in indigenous blue mussels (Mytilus edulis) sampled from coastal sites in Denmark. Mutat. Res. 2005, 585, 33–42.
  • Almeida, E.A.; Miyamoto, S. Bainy, A.C.D.; de Medeiros, M.H.G.; Di Mascio, P. Protective effect of phospholipid hydroperoxide glutathione peroxidase (PHGPx) against lipid peroxidation in mussels Perna perna exposed to different metals. Mar. Pollut. Bull. 2004, 49, 386–392.
  • Al-Subiai, S.N.; Moody, A.J.; Mustafa, S.A.; Jha, A.N. A multiple biomarker approach to investigate the effects of copper on the marine bivalve mollusc, Mytilus edulis. Ecotoxicol. Environ. Saf. 2011, 74, 1913–1920.
  • Zuykov, M.; Pelletier, E.; Harper, D.A.T. Bivalve mollusks in metal pollution studies: from bioaccumulation to biomonitoring. Chemosphere 2013, 93, 201–208.
  • Sze, P.W.C.; Lee, S.Y. Effects of chronic copper exposure on green mussel Perna viridis. Mar. Biol. 2000, 137, 379–392.
  • Beiras, R.; Albentosa, M. Inhibition of embryo development of the commercial bivalves Ruditapes decussatus and Mytilus galloprovincialis by trace metals; implications for the implementation of seawater quality criteria. Aquac. Toxicol. 2004, 230, 205–213.
  • Perceval, O.; Couillard, Y.; Pinel-Alloul, B.; Giguere, A.; Campbell, P.G.C. Metal-induced stress in bivalves living along a gradient of Cd contamination: relating sub-cellular metal distribution to population-level responses. Aquat. Toxicol. 2004, 69, 327–345.
  • Damiens, G.; Mouneyrac, C.; Quiniou, F.; His, E.; Gnassia-Barelli, M.; Roméo, M. Metal bioaccumulation and metallothionein concentrations in larvae of Crassostrea gigas. Environ. Pollut. 2006, 140, 492–499.
  • Grosell, M.; Blanchard, J.; Brix, K.V.; Gerdes, R. Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquat. Toxicol. 2007, 84, 162–172.
  • Chora, S.; Geribaldi, M.S.; Guigonis, J.M.; Samson, M.; Romeo, M.; Bebianno, M.J. Effect of cadmium in the clam Ruditapes decussatus assessed by proteomic analysis. Aquat. Toxicol. 2009, 94, 300–308.
  • Go´mez-Mendikute, A.; Elizondo, M.; Venier, P.; Cajaraville, M.P. Characterization of mussel gill cells in vivo and in vitro. Cell Tiss. Res. 2005, 321, 131–140.
  • David, J.A.O; Fontanetti, C. Surface morphology of Mytella falcate gill filaments from three regions of the Santos Estuary. Braz. J. Morphol. Sci. 2005, 22, 203–210.
  • Chan, H.M. Accumulation and tolerance to cadmium, copper, lead and zinc by green mussel Perna viridis. Mar. Ecol. Prog. Ser. 1988, 48, 295–303.
  • APHA-AWWA-WPCF. Standard Methods for the Examination of Water and Wastewater. APHA: Washington, DC, 1998.
  • Koirtyohann, S.R.; Wen, J.W. Critical study of the APDC-MIBK extraction system for atomic absorption. Anal. Chem. 1973, 45, 1986–1989.
  • El-Moselhy, K.M.; Gabal, M.N. Trace metals in water, sediments and marine organisms from the northern part of the Gulf of Suez, Red Sea. J. Marine. Syst. 2004, 46, 39–46.
  • Lowry, O.M.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275.
  • Gianno-politis, C.N.; Ries, S.K. Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314.
  • Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases the first enzymatic step in mercapturic formation. J. Biol. Chem. 1974, 249, 7130–7139.
  • Paglia, D.E.; Valentine, W.N. Studies on quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169.
  • Asperen, K. A study of housefly esterase by means of a sensitive colorimetric method. J. Ins. Physiol. 1962, 8, 401–416.
  • Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685.
  • Beauchamp, C.; Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287.
  • Ricci, G.; Bello, M.L.; Caccuri, A.M.; Galiazzo, F.; Federici, G. Detection of glutathione transferase activity on polyacrylamide gels. Anal. Biochem. 1984, 143, 226–230.
  • Lin, C.L.; Chen, H.J.; Hou, W.C. Activity staining of glutathione peroxidase after electrophoresis on native and sodium dodecylsulfate polyacrylamide gels. Electrophoresis 2002, 23, 513–516.
  • Wendel, J.F.; Weeden, N.F. Visualization and interpretation of plant isozymes. In Isozymes in Plant Biology; Soltis, D.F.; Soltis, P.S., Eds. Chapman & Hall: London, 1989; 5–45.
  • Ohkawa, H.; Ohisi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358.
  • Viarengo, A.; Ponzano, E.; Donder, F.; Fabbri, R. A simple spectrophotometric method of metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic mollusks. Mar. Environ. Res. 1997, 44, 69–84.
  • Petrovic, S.; Ozretic, B.; Krajnovic-Ozretic, M.; Bobinac, D. Lysosomal membrane stability and metallothioneins in digestive gland of mussels (Mytilus galloprovincialis Lam.) as biomarkers in a field study. Mar. Pollut. Bull. 2001, 42, 1373–1378.
  • Wilson, J.T.; Pascoe, P.L.; Parry, J.M.; Dixon, D.R. Evaluation of the comet assay as a method for the detection of DNA damage in the cells of a marine invertebrate, Mytilus edulis L. (Molusca: Pelecypoda). Mutat. Res. 1998, 399, 87–95.
  • Singh, P.N.; Mccoy, T.M.; Tice, R.R.; Schneider, L.E. A simple technique for quantization of low levels of DNA damage in individual cells. Exp. Cell. Res. 1988, 175, 184–191.
  • Mitchelmore, C.L.; Chipman, J.K. Detection of DNA strand breaks in brown trout (Salmo trutta) hepatocytes and blood cells using the single cell gel electrophoresis (comet) assay. Aquat. Toxicol. 1998, 41, 161–182.
  • Eckwert, H.; Alberti, G.; Kohler, H.R. The induction of stress proteins (hsp) in Oniscus asellus (Isopoda) as a molecular marker of multiple heavy metal exposure. I. Principles and toxicological assessment, Ecotoxicology 1997, 6, 249–262.
  • Roesijadi, G.; Fellingham, G.W. Influence of Cu, Cd, and Zn preexposure on Hg toxicity in the mussel Mytilus edulis. Can. J. Fish. Aquat. Sci. 1987, 44, 680–684.
  • Bebianno, M.J.; Langston, W.J. Metallothionein induction in Mytilus edulis exposed to cadmium. Mar. Biol. 1991, 108, 91–96.
  • Padmini, E.; Geetha, B.V. A comparative seasonal pollution assessment study on Ennore Estuary with respect to metal accumulation in the grey mullet, Mugil cephalus. Oceanol. Hydrobiol. St. 2007, 36, 91–103.
  • Rajkumar, J.S.I.; John Milton, M.C.; Ambrose, T. Distribution of heavy metal concentrations in surface waters from Ennore estuary, Tamil Nadu, India. Int. J. Curr. Res. 2011, 3, 237–244.
  • Maharajan, A.; Rajalakshmi, S.; Vijayakumaran, M.; Kumarasamy, P. Sub-lethal effect of copper toxicity against histopathological changes in the spiny lobster, Panulirus homarus (Linnaeus, 1758). Biol. Trace. Elem. Res. 2012, 145, 201–210.
  • Domouhtsidou, G.P.; Dimitriadis, V.K. Ultrastructural localization of heavy metals (Hg, Ag, Pb and Cu) in gills and digestive gland of mussels, Mytilus galloprovincialis (L.). Arch. Environ. Contam. Toxicol. 2000, 38, 472–478.
  • Gregory, M.A.; George, R.C.; Marshall, D.J.; Anandraj, A.; McClurg, T.P. The effects of mercury exposure on the surface morphology of gill filaments in Perna perna (Mollusca: Bivalvia). Mar. Pollut. Bull. 1999, 39, 116–121.
  • Gomez-Mendikute, A.; Elizondo, M.; Venier, P.; Cajaraville., M.P. Characterization of mussel gill cells in vivo and in vitro. Cell Tissue Res. 2005, 321, 131–140.
  • Ittop, G.; George, K.C.; George, R.M.; Sobhana, K.S.; Sanil, N.K.; Nisha, P.C. Histopathology of copper toxicity in the Indian edible oyster, Crassostrea madrasensi (Preston). J. Mar. Biol. Asso. India 2006, 48, 19–23.
  • Fitriawan, F.; Sutarno, S. Microanatomy alteration of gills and kidneys in freshwater mussel (Anodonta woodiana) due to cadmium exposure. Nus. Biosci. 2011, 3, 28–35.
  • Takashima, F., Hibiya, T. An Atlas of Fish Histology. Normal and Pathological Features. Kodanska: Tokyo, 1995.
  • Perry, S.F.; Laurent, P. Environmental effects on fish gills structure and function. In Fish Ecophysiology; Rankin, J.C.; Jensen, F.B., Eds.; Chapman & Hall, Inc.: London, 1993; 231–264.
  • Parvez, S.; Raisuddin, S. Effects of paraquat on the freshwater fish Channa punctata (Bloch): non-enzymatic antioxidants as biomarkers of exposure. Arch. Environ. Con. Toxicol. 2006, 50, 392–397.
  • Hariharan, G.; Suresh Kumar, S.; Laxmi Priya, S.; Paneer Selvam, A.; Mohan, D.; Purbaja, R.; Ramesh, R. Acute and chronic toxic effect of lead (Pb) and zinc (Zn) on biomarker response in post larvae of Penaeus monodon (Fabricus, 1798). Toxicol. Environ. Chem. 2012, 94, 1571–1582.
  • Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: New York, 1985.
  • Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002, 53, 1331–1341.
  • Miller, G.; Shulaev, V.; Mitter, R. Reactive oxygen signaling and abiotic stress. Physiol. Plant 2008, 133, 481–489.
  • Almeida, E.A.; Bainy, A.C.D; Loureiro, A.P.M; Martinez, G.R.; Miyamoto, S.; Onuki, J.; Barbosa, L.F.; Garcia, C.C.M.; Prado, F.M.; Ronsein, G.E.; Sigolo, C.A.; Brochini, C.B.; Martins, A.M.G.; Medeiros, M.H.G.; Mascio, P.D. Oxidative stress in Perna perna and other bivalves as indicators of environmental stress in the Brazilian marine environment: Antioxidants, lipid peroxidation and DNA damage. Comp. Biochem. Phys. A 2007, 146, 588–600.
  • Rodriguez-Ariza, A.; Martinez-Lara, E.; Pascual, P.; Pedrajas, J.R.; Dorado, G.; Toribio, F.; Barcena, J.A.; Peinado, J.; Lopez-Barea, J. Biochemical and genetic indices of marine pollution in Spanish littoral. Sci. Total. Environ. 1993, 134, 109–116.
  • Kucuksezgin, F.; Kayatekin, B.M.; Uluturhan, E.; Uysal, N.; Acikgoz, O.; Gonenc, S. Preliminary investigation of sensitive biomarkers of trace metal pollution in mussel (Mytilus galloprovincialis) from Izmir Bay (Turkey). Environ. Monit. Assess. 2008, 141, 339–345.
  • Company, R.; Serafim, A.; Bebianno, M.J.; Cosson, R.; Shillito, B.; Fiala-Medioni, A. Effect of cadmium, copper and mercury on antioxidant enzyme activities and lipid peroxidation in the gills of the hydrothermal vent mussel Bathymodiolus azoricus. Mar. Environ. Res. 2004, 58, 377–381.
  • Torres, M.A.; Testa, C.P.; Gaspari, C.; Masutti, M.B.; Panitz, C.M.N.; Curi-Pedrosa, R.; de Almeida, E.A.; Mascio, P.D.; Filho, D.W. Oxidative stress in the mussel Mytella guyanensis from polluted mangroves on Santa Catarina Island, Brazil. Mar. Pollut. Bull. 2002, 44, 923–932.
  • Vieira, L.R.; Gravato, C.; Soares, A.M.V.M.; Morgado F.; Guilhermino L. Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: Linking biomarkers to behavior. Chemosphere 2009, 76, 1416–1427.
  • Akcha, F.; Izuel, C.; Venier, P.; Budzinski, H.; Burgeot, T.; Narbonne, J.F. Enzymatic biomarker measurement and study of DNA adduct formation in benzo[a]pyrene-contaminated mussels, Mytilus galloprovincialis. Aquat. Toxicol. 2000, 49, 269–287.
  • Wu, J.F.; Yu, Z.M.; Song, X.X.; Wang, Y. Response of integrated biomarkers of fish (Lateolabrax japonicus) exposed to benzo[a]- pyrene and sodium dodecylbenzene sulfonate. Ecotoxicol. Environ. Safe. 2006, 65, 230–236.
  • Geracitano, L.A.; Bocchetti, R.; Monserrat, J.M.; Regoli, F.; Bianchini, A. Oxidative stress responses in two populations of Laeonereis acuta (Polychaeta, Nereididae) after acute and chronic exposure to copper. Mar. Environ. Res. 2004, 58, 1–17.
  • Cunha, I.; Mangas-Ramirez, E.; Guilhermino, L. Effects of copper and cadmium on cholinesterase and glutathione S-transferase activities of two marine gastropods (Monodonta lineata and Nucella lapillus). Comp. Biochem. Physiol. C 2007, 145, 648–657.
  • Orbea, A.; Fahimi, H.D.; Cajaraville, M.P. Immunolocalization of four antioxidant enzymes in digestive glands of mollusks and crustaceans and fish liver. Histochem. Cell Biol. 2000, 114, 393–404.
  • Radwan, M.A.; El-Gendy, K.S.; Gad, A.F. Oxidative stress biomarkers in the digestive gland of Theba pisana exposed to heavy metals. Arch. Environ. Contam. Toxicol. 2010, 58, 828–835.
  • Barata, C.; Baird, D.J.; Nogueira, A.J.A.; Soares, A.M.V.M.; Riva, M.C. Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. Aquat. Toxicol. 2006, 78, 1–14.
  • Doumen, C.; Decleir, W. Lactate and malate dehydrogenase activities in the longitudinal muscle of Stichopus regalis (Echinodermata: Holothuroidea). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1984, 77, 373–378.
  • Satyaparameshwar, K.; Ravinder Reddy, T.; Vijaya Kumar, N. Study of carbohydrate metabolism in selected tissues of fresh water mussel, Lamellidens marginalis under copper sulphate toxicity. J. Environ. Biol. 2006, 27, 39–41.
  • Mohan, C.V.; Gupta, T.R.C.; Shelly, H.P.C.; Menon, M. Combined toxicity of Hg and Cd to the mussel Perna viridis. Dis. Aquat. Organ. 1986, 2, 65–72.
  • Brzóska, M.M.; Moniuszko-Jakoniuk, J. Interactions between cadmium and zinc in the organism. Food Chem. Toxicol. 2001, 39, 967–980.
  • Geret, F.; Jouan, A.; Turpin, V.; Bebianno, M.J.; Cosson, R.P. Influence of metal exposure on metallothionein synthesis and lipid peroxidation in two bivalve mollusks: the oyster (Crassostrea gigas) and the mussel (Mytilus edulis). Aquat. Living Resour. 2002, 15, 61–66.
  • Couillard, Y.; Campbell, P.G.C.; Pellerin-Masicotte, J.; Auclair, J.C. Field transplantation of a freshwater bivalve, Pyganodon grandis, across a metal contamination gradient. 2. Metallothionein response to Cd and Zn exposure, evidence for cytotoxicity, and links to effects at higher levels of biological organization. Can. J. Fish. Aquat. Sci. 1995, 52, 703–715.
  • Lee, R.F.; Steinert, S. Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat. Res. 2003, 544, 43–64.
  • Coughlan, B.M.; Hartl, M.G.; O’Reilly, S.J.; Sheehan, D.; Morthersill, C.; van Pelt, F.N.; O’Halloran, J.; O’Brien, N.M. Detecting genotoxicity using the comet assay following chronic exposure of manila clam tapes semidecussatus to polluted estuarine sediments. Mar. Pollut. Bull. 2002, 44, 1359–1365.
  • Jha, A.N. Ecotoxicological applications and significance of the comet assay. Mutagen. 2008, 23, 207–221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.