Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 49, 2014 - Issue 13
785
Views
41
CrossRef citations to date
0
Altmetric
ARTICLES

Ecotoxicity of silver nanomaterials in the aquatic environment: A review of literature and gaps in nano-toxicological research

, &
Pages 1588-1601 | Received 13 Feb 2014, Published online: 19 Aug 2014

References

  • Klaine, S.J.; Koelmans, A.A.; Home, N.; Carley, S.; Handy, R.D.; Kapustka, L.; Nowack, B.; von der Kammer, F.; Paradigms to assess the environmental impact of manufactured nanomaterials. Environ. Toxicol. Chem. 2012, 31(1), 3–12.
  • Peralta-Videaa, J.R.; Zhaoa, L.; Lopez-Morenoc, M.L. Nanomaterials and the environment: a review for the biennium 2008-2010. J. Hazard. Mater. 2011, 186, 1–15.
  • Maynard, A.D.; Aitken, R.J.; Butz, T.; Colvin, V.; Donaldson, K.; Oberdorster, G.; Philbert, M.A.; Ryan, J.; Seaton, A.; Stone, V.; Tinkle, S.S.; Tran, L.; Walker, N.J.; Warheit, D.B. Safe handling of nanotechnology. Nature 2006, 444, 267–269.
  • Klaine, S.J.; Alvarez, P.J.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y. Nanomaterials in the environment: behaviour, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825–1851.
  • Romer, I.; White, T.A.; Baalousha, M.; Chipman, K.; Viant, M.R.; Lead, J.R. Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. J. Chromatogr. 2011, 1218(27), 4226–4233.
  • Farre, M.; Gajda-Schrantz, K.; Kantiani, L.; Barcelo, D. Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal. Bioanal. Chem. 2009, 393, 81–95.
  • Elia, C.; Galarini, R.; Taticchi, M.I.; Dorr, A.J.; Mantilacci, L. Antioxidant responses and bioaccumulation in Icttalurus melas under mercury exposure. Ecotoxicol. Environ. Saf. 2003, 55, 162–167.
  • Oberholster, P.J.; Musee, N.; Botha, A-M.; Chelulu, P.K.; Fock, W.W.; Ashton, P.J. Assessment of the effect of nanomaterials on sediment-dwelling invertebrate Chironmus tentans larvae. Ecotoxicol. Environ. Saf. 2011, 74, 416–423.
  • Li, H.C.; Zhang, J.; Wang, T.; Luo, W.; Zhou, Q.; Jiang, G. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquat. Toxicol. 2008, 89, 251–256.
  • Landsiedel, R.; Kapp, M.D.; Schulz, M.; Wiench, K.; Oesch, F. Genotoxicity investigations on nanomaterials: Methods, preparation and characterization of test material, potential artifacts and limitations—Many questions, some answers. Mutat. Res. 2009, 681, 241–258.
  • Park, S-Y.; Choi, J. Geno- and ecotoxicity evaluation of silver nanoparticles in freshwater crustacean Daphnia magna. Environ. Eng. Res. 2010, 15(1), 23–27.
  • Oberdorster, E.; Zhu, S.Q.; Blickley, T.M.; Clellan-Green, P.; Haasch, M.L. Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C-60) on aquatic organisms. Carbon. 2006, 4, 1112–1120.
  • Baun, A.; Hartmann, N.B.; Grieger, K.; Kusk, K.O. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotox. 2008, 17, 387–395.
  • Handy, R.D.; Henry, T.B.; Scown, T.M.; Johnston, B.D.; Tyler, C.R. Manufactured nanoparticles: their uptake and effects on fish – a mechanistic analysis. Ecotox. 2008, 17, 396–409.
  • Fabrega, J.; Luoma, S.N.; Tyler, C.R.; Galloway, T.S.; Lea, J.R. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ. Int., 2011, 37, 517–531.
  • Mueller, N.C.; Nowack, B. Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 2008, 42, 4447–4453.
  • The Project on Emerging Nanotechnologies. Available at <http:/www.nanotechnology.org/> accessed 4 July 2012
  • Nel, A.; Xia, T.; Madler, L.; Li, T. Toxic potential of materials at the nano level. Science 2006, 11, 622–627.
  • Velzeboer, I.; Hendriks, A.J.; Ragas, A.M.J.; van de Meent, D. Aquatic ecotoxicity tests of some nanomaterials. Nanomat. Environ. 2008, 27(9), 1942–1947.
  • Royal Commission. 27th Report: Novel Materials in the Environment: The Case of Nanotechnology. Royal Commission on Environmental Pollution: London, 2008; 154.
  • Stebounova, L.V.; Guio, E.; Grassian, V.H. Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J. Nanopart. Res. 2011, 13, 233–244.
  • O’Melia, C.R. Aquasols — The behavior of small particles in aquatic systems. Environ. Sci. Technol. 1980, 14, 1052–1060.
  • Choi, O.; Yu, C.-P.; Fernandez, G.E.; Hu, Z. Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Res. 2010, 44, 6095–6103.
  • Glaspell, G.P.; Zuo, C.; Jagodzinski, P.W. Surface enhanced raman spectroscopy using silver nanoparticles: The effects of particle size and halide ions on aggregation. J. Clust. Sci. 2005, 16, 39–51.
  • Pham, C.J.; Yi, J.; Gu, M.B. Biomarker gene response in male Medaka (Oryzias latipes) chronically exposed to silver nanoparticle. Ecotoxicol. Environ. Saf. 2012, 78, 239–245.
  • Saini, R.K.; Srivastava, A.K.; Gupta, P.K.; Das, K. pH dependent reversible aggregation of Chitosan and glycol-Chitosan stabilized silver nanoparticles. Chem. Phy. Lett. 2012, 511, 326–330.
  • Batley, G.E.; McLaughlin, M.J. Fate of Manufactured Nanomaterials in the Australian Environment, CSIRO Niche Manufacturing Flagship Report. Department of the Environment, Water, Heritage and the Arts, Australia, 2010.
  • Liau, S.Y.; Read, D.C.; Pugh, W.J.; Furr, J.R.; Russel, A.D. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol. 1997, 25, 279–283.
  • Ratte, H.T. Bioaccumulation and toxicity of silver compounds: a review. Environ. Toxicol. Chem. 1999, 18, 89–108.
  • Luoma, S. Silver Nanotechnologies and the Environment; Woodrow Wilson International Center for Scholars. Washington, DC, USA, 2008; 72.
  • Wiench, K.; Wohlleben, W.; Hisgen, V.; Radke, K.; Salinas, E. Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemos. 2009, 76, 1356–1365.
  • Croteau, M-N.; Misra, S.K.; Luoma, S.N.; Valzami-Jones, E. Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag. Environ. Sci. Technol. 2011, 45, 6600–6607.
  • Kohler, A.R.; Som, C.; Helland, A.; Gottschalk, F. Studying the potential release of carbon nanotubes throughout the application life cycle. J. Clean. Prod. 2008, 16, 927–937.
  • Moore, M.N. Do nanoparticles present toxicological risks for the health of the aquatic environment? Environ. Int. 2006, 32, 967–976.
  • Zhao, C-M.; Wang, W-E. Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environ. Sci. Technol. 2010, 44, 7699–7704.
  • Aschberger, K.; Micheletti, C.; Sokull-Kluttgen, B.; Christensen, F.M. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health - Lessons learned from four case studies. Environ. Int. 2012, 37, 1143–1156.
  • Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 2008, 42, 8959–8964.
  • Miao, A.J.; Schwehr, K.A.; Xu. C.; Zhang, S.J.; Luo, Z.P. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ. Poll. 2009, 157, 3034–3041.
  • Miao, A-J.; Luo, Z.; Chen, C-S.; Chin, W-C.; Santschi, P.H.; Quigg, A. Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS ONE 2010, 5(12), 15196.
  • Gubbins, E.J.; Batty, L.C.; Lead, J.R. Phytotoxicity of silver nanoparticles to Lemna minor L. Environ. Poll. 2011, 159, 1551–1559.
  • Oukarroum, A.; Bras, S.; Perreault, F.; Popovic, R. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol. Environ. Saf. 2012, 78, 80–85.
  • Blaser, S.A.; Scheringer, M.; MacLeod, M.; Hungerbühler, K. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci. Tot. Environ. 2008, 90, 396–409.
  • Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.Z.; Tam, P.K.H.; Chiu, J.F.; Che, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome. Res. 2006, 5, 916–924.
  • Griffitt, R.J.; Hyndman, K.; Denslow, N.D.; Barber, D.S. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol. Sci. 2009, 107, 404–415.
  • Yeo, M.K.; Pak, S.W. Exposing zebrafish to silver nanoparticles during caudal fin regeneration disrupts caudal fin growth and p53 signaling. Mol. Cell. Toxicol. 2008, 4(3), 11–17.
  • Chae, Y.J.; Pham, C.H.; Lee, J.; Bae, E.; Yi, J.; Gu, M.B. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat. Toxicol. 2009, 94, 320–327.
  • Scown, T.M.; Santos, E.; Johnston, B.D.; Gaiser, B.; Baalousha, M.; Mitov, S.; Lead, J.R.; Stone, V.; Fernandes, T.F.; Jepson, M.; van Aerle, R.; Tyler, C.R. Effects of Aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol. Sci. 2010, 115(2), 521–534, doi:10.1093/toxsci/kfq076.
  • Geller, W.; Muller, H. The filtration apparatus of cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia. 1981, 49, 316–321.
  • Asghari, S.; Johari, S.A.; Lee, J.H.; Kim, Y.S.; Jeon, Y.B.; Choi, H.J.; Moon, M.C.; Yu, I.J. Toxicity of various silver nanoparticles compared to silver ions on Daphnia magna. J. Nanobiotech. 2012, 10, 14–34.
  • Gaiser, B.K.; Fernandes, T.F.; Jepson, M.A.; Lead, J.R.; Tyler, C.R.; Baalousha, M.; Biswas, A.; Britton, G.J.; Cole, P.A.; Johnston, B.D.; Ju-Nam, Y.; Rosenkranz, P.; Scown, T.M.; Stone, B.D. Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ. Toxicol. Chem. 2012, 31(1), 144–154.
  • Gaiser, B.K.; Biswa, A.; Rosenkranz, P.; Jepson, M.A.; Lead, J.R.; Stone, V.; Tyler, C.R.; Fernandes, T.F. Effects of silver and cerium dioxide micro- and nano-sized particles on Daphina magna. J. Environ. Mon. 2011, 13, 1227–1235.
  • Li, J.J.; Muralikrishnan, S.; Ng, C.T.; Yung, L.Y.L.; Bay, B.H. Nanoparticle-induced pulmonary toxicity. Exp. Biol. Med. 2010, 235, 1025–1033.
  • Roh, J-Y.; Sim, S.J.; Yi, J.; Park, K.; Chung, K.H.; Ryu, D-Y.; Choi, J. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ. Sci. Technol. 2009, 43, 3933–3940.
  • Ringwood, A.H.; McCarthy, M.; Bates, T.C.; Carroll, D.L. The effects of silver nanoparticles on oyster embryos. Mar. Environ. Res. 2010, 36, S49–S51.
  • Johnston, H.J.; Hutchison, G.R.; Christensen, F.M.; Peters, S.; Hankin, S.; Stone, V. Identification of the mechanisms that drive the toxicity of TiO2 particulates: the contribution of physicochemical characteristics. Part. Fibre. Toxicol. 2009, 6, 33–59.
  • Lee, K.J.; Nallathamby, P.D.; Browining, L.M.; Osgood, C.J.; Xu, X-H.N. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. Am. Chem. Soc. 2007, 2(1), 133–143.
  • Griffit, R.J.; Brown-Peterson, N.J.; Savin, D.A.; Manning, C.S.; Boube, I.; Ryan, R.A.; Brouwer, M. Effects of chronic nanoparticulate silver exposure to adult and juvenile sheepshead minnows (Cyprinodon variegatus). Environ. Toxicol. Chem. 2012, 31(1), 160–167.
  • Weis, J.S.; Weis, P. Effects of environmental pollutants on early fish development. Rev. Aquat. Sci. 1989, 1, 45–73.
  • Cattaneo, A.G.; Gornati, R.; Chiriva-Internati, M.; Bernardini, G. Ecotoxicology of nanomaterials: the role of invertebrate testing. ISJ. 2009, 6, 78–97.
  • Elumalai, M.; Antunes, C.; Guilhermino, J. Enzymatic biomarkers in the crab Carcinus maenas from the Minho River estuary (NW Portugal) exposed to zinc and mercury. Chemosphere 2007, 66, 1249–1255.
  • Pereira, P.; de Pablo, H.; Subida, M.D.; Vale, C.; Pacheco, M. Biochemical responses of the shore crab (Carcinus maenas) in a eutrophic and metal-contaminated coastal system (Obidos lagoon, Portugal). Ecotoxicol. Environ. Saf. 2009, 72, 1471–1480.
  • WHO (World Health Organization) Biomarkers in Risk Assessment: Validity and Validation. Environmental Health Criteria 222; World Health Organization: Geneva, 2001; 238 pp.
  • Van der Oost, R.; Beyer, J.; Vermeulen, N.P.E.; Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol. 2003, 13, 57–149.
  • Pinho, G.L.L.; da Rosa, C.M.; Maciel, F.E.; Bianchini, A.; Yunes, J.S.; Proenca, L.A.O.; Monserrat, J.M. Antioxidant responses and oxidative stress after microcystin exposure in the hepatopancreas of an estuarine crab species. Ecotoxicol. Environ. Saf. 2005, 61, 353–360.
  • Maria, V.L.; Santos, M.A.; Bebianno, M.J. Contaminant effects in shore crabs (Carcinus maenas) from Ria Formosa Lagoon. Comp. Biochem. Physiol. C. 2009, 150, 196–208.
  • Lavarias, S.; Heras, H.; Pedrini, N.; Tournier, H.; Ansaldo, M. Antioxidant response and oxidative stress levels in Macrobrachium borellii (Crustacea: Palaemonidae) exposed to the water-soluble fraction of petroleum. Comp. Biochem. Physiol. C. 2011, 153, 415–421.
  • Saravana Bhavan, P.; Geraldine, P. Biochemical stress responses in tissues of the prawn Macrobrachium malcolmsonii on exposure to endosulfan. Pestic. Biochem. Physiol. 2001, 70, 27–41.
  • Gibson, R.; Barker, P.L. The decapoda hepatopancreas. Oceanogr. Mar. Bio. Ann. Rev. 1979, 17, 285–346.
  • Ghate, H.V.; Mulherkar, L. Histological changes in the gills of two freshwater prawn species exposed to copper sulphate. Ind. J. Exp. Biol. 1979, 17, 838–840.
  • Luqing, P.; Na, L.; Hongxia, Z.; Jing, W.; Jingjing, M.; Effects of heavy metal ions (Cu2+, Pb2+ and Cd2+) on DNA damage of the gills, hemocytes and hepatopancreas of marine crab, Charybdis japonica. J. Oc. Univ. China (Ocean Coast Sea Res.) 2001, 10(2), 177–184.
  • Huggett, R.J.; Kimerle, R.A.; Mehrle-Jr., P.M.; Bergman, H.L. Biomarkers: Biochemichal, Physiological, and Histological Markers of Anthropogenic Stress, Lewis Publishers, Chelsea, MI; 1992.
  • Stegeman, J.J.; Brouwer, M.; Richard, T.D.G.; Forlin, L.; Fowler, B.A.; Sanders, B.M.; van Veld, P.A. Molecular responses to environmental contamination: enzyme and protein systems as indicators of chemical exposure and effect. In: Biomarkers: Biochemical, Physiological and Histological markers of Anthropogenic Stress; Huggett, R.J., Kimerly, R.A., Mehrle, P.M., Jr, Bergman, H.L., Eds.; Lewis Publishers: Chelsea, MI, 1992; 235–335.
  • Ching, E.W.K.; Siu, W.H.L.; Lam, P.K.S.; Xu, L.; Zhang, Y.Y.; Richardson, B.J. DNA adduct formation and DNA strand breaks in green-lipped mussels (Perna viridis) exposed to benzo[a]pyrene: dose- and time-dependent relationships. Mar. Pollut. Bull. 2001, 42, 603–610.
  • Pan, L.Q.; Zhang, H.X. Metallothionein, antioxidant enzymes and DNA strand breaks as biomarkers of Cd exposure in a marine crab, Charybdis japonica. Comp. Biochem. Physiol, C. 2006, 144, 67–75.
  • Ferrer, L.; Andrade, S.; Asteasuain, R.; Marcovecchio, J. Acute toxicities of four metals on the early life stages of the crab Chasmagnathus granulata from Bahia Blanca estuary, Argentina. Ecotoxicol. Environ. Saf. 2006, 65, 209–217.
  • Roesijadi, G. Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat. Toxicol. 1992, 22(2), 81–114.
  • McComb, R.B.; Bower, G.N.; Posen, S. Alkaline Phosphatase, Plenum Press, New York, 1979.
  • Rajalakshmi, S.; Mohandas, A. Copper-induced changes in tissue enzyme activity in a freshwater mussel. Ecotoxicol. Environ. Saf. 2005, 62, 140–143.
  • Vijayavel, K.; Balasubramanian, M.P. Fluctuations of biochemical constituent and marker enzymes as a consequence of naphthalene toxicity in the edible estuarine crab, Scylla serrata. Ecotoxicol. Environ. Saf. 2006, 63, 141–147.
  • Saha, S.; Ray, M.; Ray, S. Activity of phosphatases in the hemocytes of estuarine edible mudcrab, Scylla serrata exposed to arsenic. J. Environ. Biol. 2009, 30(5), 655–658.
  • Zhou, J.; Wang, W.-N.; Wang, A.-L.; He, W.-Y.; Zhou, Q.-Y.; Liu, Y.; Xu, J. Glutathione S-transferase in the white shrimp Litopenaeus vannamei: Characterization and regulation under pH stress. Comp. Biochem. Physiol, C. 2009, 150, 224–230.
  • Martins, C.D.G.; Barcarolli, I.F.; de Menezes, E.J.; Giacomin, M.M.; Wood, C.M.; Bianchini, A. Acute toxicity, accumulation and tissue distribution of copper in the blue crab Callinectes sapidus acclimated to different salinities: In vivo and in vitro studies. Aquat. Toxicol. 2011, 101, 88–99.
  • Grosell, M.; Blanchard, J.; Brix, K.V.; Gerdes, R. Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquat. Toxicol. 2007, 84, 162–172.
  • Li, C.C.; Chen, J.C. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under low and high pH stress. Fish Shellfish Immunol. 2008, 25(6), 701–709.
  • Ying, W.; Xiong, Z.G. Oxidative stress and NAD(+) in ischemic brain injury: current advances and future perspectives. Curr. Med. Chem. 2010, 17, 2152–2158.
  • Lapresta-Fernandez, A.; Fernandez, A.; Blasco, J. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trends Anal. Chem. 2012, 32, 40–59.
  • Sanders, B.M. Stress proteins in aquatic organisms: an environmental perspective. Crit. Rev. Toxicol. 1993, 23(1), 49–75.
  • Feige, U.; Morimoto, R.I.; Yahara, I.; Polla, B.S. Stress-Inducible Cellular Responses. Basel, Switzerland: Birkhauser Verlag, 1996; 512.
  • Iwama, G.K.; Thomas, P.T.; Forsyth, R.B.; Vijayan, M.M. Heat-shock protein expression in fish. Rev. Fish Biol. Fisher. 1998, 8, 56.
  • Oberdorster, E.; Rittschof, D.; McClellan-Green, P. Induction of cytochrome P450 3A and heat shock protein by tributyltin in blue crab, Callinectes sapidus. Aquat. Toxicol. 1998, 41, 83–100.
  • Shugart, L.R. DNA damage as a biomarker of exposure. Ecotoxicology 2000, 9, 329–340.
  • Kurelec, B. The genotoxic disease syndrome. Mar. Environ. Res. 1993, 35, 341–348.
  • Gravato, C.; Oliveira, M.; Santos, M.A. Oxidative stress and genotoxic responses to resin acids in Mediterranean mussels. Ecotoxicol. Environ. Saf. 2005, 61, 221–229.
  • Bolognesi, C.; Frenzilli, G.; Lasagna, C.; Perrone, E.; Roggieri, P. Genotoxicity biomarkers in Mytilus galloprovincialis: Wild versus caged mussels. Mutat. Res. 2004, 552, 153–162.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.