Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 2
85
Views
4
CrossRef citations to date
0
Altmetric
ARTICLES

Interactions among mononitrophenol isomers during biodegradation of their mixtures

, , , &
Pages 109-118 | Received 09 Jul 2014, Published online: 06 Jan 2015

References

  • Zylstra, G.J.; Bang, S.W.; Newman, L.M.; Perry L.L. Introduction. In Biodegradation of Nitroaromatic Compounds and Explosives; Lewis Publishers: Boca Raton, FL, 2000; 145–160.
  • Feltes, J.; Levsen, K.; Volmer, D.; Spiekermann, M. Gas chromatographic and mass spectrometric determination of nitroaromatics in water. J. Chromatogr. 1990, 518(1), 21–40.
  • Rieger, P.G.; Meick, H.M.; Gerle, M.; Vogt, U.; Groth, T.; Knackmuss, H.K. Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence. J. Biotechnol. 2002, 94(1), 101–123.
  • Heytler, P.G. Uncouplers of oxidative phosphorylation. Pharmacol. Therapeut. 1980, 10(1), 461–472.
  • US EPA. State Water Quality Standards Summary: District of Columbia. US EPA: Washington, DC, 1988; EPA 440/5-88-041.
  • US EPA. Water Quality Criteria. US EPA: Washington, DC, 1976.
  • Aleksieva, Z.; Ivanova, D.; Godjevargova, T.; Atanasov, B. Degradation of some phenol derivatives by Trichosporon cutaneum R57. Proc. Biochem. 2002, 37(11), 1215–1219.
  • Ye, J.; Singh A.; Ward, O. Biodegradation of nitroaromatics and other nitrogen-containing xenobiotics. World J. Microbiol. Biotechnol. 2004, 20(2), 117–135.
  • She, Z.; Gao, M.; Jin, C.; Chen, Y.; Yu, J. Toxicity and biodegradation of 2,4-dinitrophenol and 3-nitrophenol in anaerobic systems. Proc. Biochem. 2005, 40(9), 3017–3024.
  • Carrera, J.; Martin-Hernandez, M.; Suarez-Ojeda, M.E.; Perez, J. Modeling the pH dependence of the kinetics of aerobic p-nitrophenol biodegradation. J. Hazard. Mater. 2011, 186(2–3), 1947–1953.
  • Salehi, Z.; Yoshikawa, H.; Mineta, R.; Kawase, Y. Aerobic biodegradation of p-Nitrophenol by acclimated waste activated sludge in a slurry bubble column. Proc. Biochem. 2011, 46(1), 284–289.
  • Kulkarni, M.; Chaudhari, A. Biodegradation of p-nitrophenol by P. putida. Bioresour. Technol. 2006, 97(8), 982–988.
  • Ray, P.; Ait Oubelli, M.; Löser, C. Aerobic 4-nitrophenol degradation by microorganisms fixed in a continuously working aerated solid-bed reactor. Appl. Microbiol. Biotechnol. 1999, 51(2), 284–290.
  • Sahoo, N.K.; Pakshirajan, K.; Ghosh, P.K. Biodegradation of p-nitrophenol using Arthrobacter chlorophenolicus A6 in a novel upflow packed bed reactor. J. Hazard. Mater. 2011, 190(1–3), 729–737.
  • Tomei, M.C.; Annesini, C.; Bussoletti, S. 4-Nitrophenol biodegradation in a sequencing batch reactor: kinetic study and effect of filling time. Water Res. 2004, 38(2), 375–384.
  • El Fantroussi. S.; Giot. R.; Naveau. H.; Agathos. S. Acclimation of a methanogenic consortium to a mixture of hydroxylated aromatic compounds. Chemosphere 1998, 36(7), 1575–1583.
  • Karim, K.; Gupta, S.K. Biotransformation of nitrophenols in upflow anaerobic sledge blanket reactors. Bioresource Technol. 2001, 80(3), 179–186.
  • Karim, K.; Gupta, S.K. Effect of shock and mixed nitrophenolic loadings on the performance of UASB reactors. Water Res. 2006, 40(5), 935–942.
  • Kuscu, O.S.; Sponza, D.T. Treatment efficiencies of a sequential anaerobic baffled reactor (ABR)/completely stirred tank reactor (CSTR) system at increasing p-nitrophenol and COD loading rates. Proc. Biochem. 2006, 41(7), 1484–1492.
  • Tomei, M.C.; Rita, S.; Angelucci, D.M.; Annesini, M.C.; Daugulis, A.J. Treatment of substituted phenol mixtures in single phase and two-phase solid-liquid partitioning bioreactors. J. Hazard. Mater. 2011, 191(1–3), 190–195.
  • Bhatti, Z.I.; Toda, H.; Furukawa, K. p-Nitrophenol degradation by activated sludge attached on nonwovens. Water Res. 2002, 36(5), 1135–1142.
  • Halecky, M.; Karlova, P.; Paca, J.; Stiborova, M.; Kozliak, E.I.; Bajpai, R.; Sedlacek, I. Biodegradation of a mixture of mononitrophenols in a packed-bed aerobic reactor. J. Environ. Sci. Health A 2013a, 48(9), 989–999.
  • Hudcova, T.; Halecky, M.; Kozliak, E.; Stiborova, M.; Paca, J. Aerobic degradation of 2,4-dinitrotoluene by individual bacterial strains and defined mixed population in submerged cultures. J. Hazard. Mat. 2011, 192(2), 605–613.
  • Paca, J.; Halecky, M.; Hudcova, T.; Bajpai, R. Aerobic biodegradation of dinitrotoluenes in batch systems by pure and mixed cultures. Folia Microbiol. 2008, 53(2), 105–109.
  • Takeo, M.; Murakami, M.; Niihara, S.; Yamamoto, K.; Nishimura, M.; Kato, D.; Negoro, S. Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. Strain PN1: characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression. J Bacteriol. 2008, 190(22), 7367–7374.
  • Ghosh, A.; Khurana, M.; Chauhan, A.; Takeo, M.; Chakraborti, A.K.; Jain, R.K. Degradation of 4-Nitrophenol, 2-Chloro-4-nitrophenol, and 2,4-Dinitrophenol by Rhodococcus imtechensis Strain RKJ300. Environ. Sci. Technol. 2010, 44(3), 1069–1077.
  • Meulenberg, R.; Pepi, M.; deBont, J.A.M. Degradation of 3-nitrophenol by Pseudomonas putida B2 occurs via 1,2,4-benzenetriol. Biodegradation 1996, 7(4), 303–311.
  • Schenzle, A.; Lenke, H.; Fischer, P.; Williams, P.A.; Knackmuss, H.J. Catabolism of 3-nitrophenol by Ralstonia Eutropha Jmp 134. Appl. Environ. Microbiol. 1997, 63(4), 1421–1427.
  • Zhao, J.S.; Ward, O.P. Substrate selectivity of a 3-nitrophenol induced metabolic system in Pseudomonas putida 2NP8 transforming nitroaromatic compounds into ammonia after aerobic conditions. Appl. Environ. Microbiol. 2001, 67(3), 1388–1391.
  • Gemini, V.L.; Gallego, A.; de Oliveira, V.M.; Gomez, C.E.; Manfio, G.P.; Korol, S.E. Biodegradation and detoxification of p-nitrophenol by Rhodococcus wratislaviensis. Int. Biodeter. Biodegr. 2005, 55(2), 103–108.
  • Xiao, Y.; Zhang, J.J.; Liu, H.; Zhou, N.Y. Molecular characterization of a novel ortho-nitrophenol catabolic gene cluster in Alcaligenes sp. Strain NyZ215. J. Bacteriol. 2007, 189(18), 6587–6593.
  • Luque-Almagro, V.M.; Blasco, R.; Sáez, L.P.; Roldán, M.D.; Moreno-Vivián, C.; Castillo, F.; Martínez-Luque, M. Interactions between nitrate assimilation and 2,4-dinitrophenol cometabolism in Rhodobacter capsulatus E1F1. Curr. Microbiol. 2006, 53(1), 37–42.
  • Halecky, M.; Paca, J.; Stiborova, M.; Kozliak, E.; Maslanova, I. Pollutant interactions during the biodegradation of phenol mixtures with either 2- and 3-mononitrophenols in a continuously operated packed bed reactor. J. Environ. Sci. Health A 2013b, 48(13), 1609–1618.
  • Zeyer, J.; Kearney, P. Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida. J. Agric. Food. Chem. 1984, 32(2), 238–242.
  • Zhang, J.J.; Liu, H.; Xiao, Y.; Zhang, X.E.; Zhou, N.Y. Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3. J. Bacteriol. 2009, 191(8), 2703–2710.
  • Zhang, S.; Sun, W.; Xu, L.; Zheng, X.; Chu, X.; Tian, J.; Wu, N.; Fan, Y. Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in Pseudomonas sp. 1-7. BMC Microbiol. 2012, 12, 11 p.
  • Jin, D.; Wang, P.; Bai, Z.; Wang, X.; Peng, H.; Qi, R.; Yu, Z.; Zhuang, G. Analysis of bacterial community in bulking sludge using culture-dependent and -independent approaches. J. Environ. Sci. 2011, 23(11), 1880–1887.
  • Kapley, A.; Prasad, S.; Purohit, H.J. Changes in microbial diversity in fed-batch reactor operation with wastewater containing nitroaromatic residues. Bioresour. Technol. 2007, 98(13), 2479–2484.
  • Wackett, L.P. Pseudomonas putida - a versatile biocatalyst. Nat. Biotechnol. 2003, 21(2), 136–138.
  • Nelson, K.E.; Weinel, C.; Paulsen, I.T.; Dodson, R.J.; Hilbert, H.; Martins dos Santos, V.A.; Fouts, D.E.; Gill, S.R.; Pop, M.; Holmes, M.; Brinkac, L.; Beanan, M.; DeBoy, R.T.; Daugherty, S.; Kolonay, J.; Madupu, R.; Nelson, W.; White, O.; Peterson, J.; Khouri, H.; Hance, I.; Chris Lee, P.; Holtzapple, E.; Scanlan, D.; Tran, K.; Moazzez, A.; Utterback, T.; Rizzo, M.; Lee, K.; Kosack, D.; Moestl, D.; Wedler, H.; Lauber, J.; Stjepandic, D.; Hoheisel, J.; Straetz, M.; Heim, S.; Kiewitz, C.; Eisen, J.A.; Timmis, K.N.; Dusterhoft, A.; Tummler, B.; Fraser, C.M Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 2002, 4(12), 799–808.
  • Kulkarni, M.; Chaudhari, A. Microbial remediation of nitro-aromatic compounds: An overview. J. Environ. Manage. 2007, 85(2), 496–512.
  • Jussila, M.M.; Zhao, J.; Suominen, L.; Lindström, K. TOL plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo. Environ. Pollut. 2007, 146(2), 510–524.
  • Liu, X.Y.; Wang, B.J.; Jiang, C.Y.; Zhao, K.X.; Drake, H.L.; Liu, S.J. Simultaneous biodegradation of nitrogen-containing aromatic compounds in a sequencing batch bioreactor. J. Environ. Sci. 2007, 19(5), 530–535.
  • Paca, J.; Halecky, M.; Barta, J.; Bajpai, R. Aerobic biodegradation of 2,4-DNT and 2,6-DNT: Performance characteristics and biofilm composition changes in continuous packed-bed bioreactors. J. Hazard. Mater. 2009, 163(2–3), 848–854.
  • Paca, J.; Halecky, M.; Hudcova, T.; Paca, J. Jr; Stiborova, M.; Kozliak, E. Factors influencing the aerobic biodegradation of 2,4-dinitrotoluene in continuous packed bed reactors. J. Environ. Sci. Heal. A 2011, 46(12), 1328–1337.
  • Middelhoven, W.J. Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeastlike fungi. A. van Leeuw. J. Microb. 1993, 63(2), 125–144.
  • Middelhoven, W.J.; Koorevaar, M.; Schuur, G.W. Degradation of benzene compounds by yeasts in acidic soils. Plant Soil 1992, 145(1), 37–43.
  • Kanaly, R.A.; Kim, I.S.; Hur, H.-G. Biotransformation of 3-methyl-4-nitrophenol, a main product of the insecticide fenitrothion, by Aspergillus niger. J. Agric. Food. Chem. 2005, 53(16), 6426–6431.
  • Iwaki, H.; Kazuya, A.; Hasegawa, Y. Isolation and characterization of a new 2,4‑dinitrophenol degrading bacterium Burkholderia sp. Strain KU-46 and its degradation pathway. FEMS Microbiol Lett. 2007, 2749(1), 112–117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.