Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 2
274
Views
8
CrossRef citations to date
0
Altmetric
ARTICLES

Assessment of bacterial community structure in nitrifying biofilm under inorganic carbon-sufficient and -limited conditions

, , , , , & show all
Pages 201-212 | Received 03 Jun 2014, Published online: 06 Jan 2015

References

  • Kim, D.J.; Lee, D.I.; Keller, J. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresour. Technol. 2006, 97, 459–468.
  • Do, H.; Lim, J.; Shin, S.G.; Wu, Y.J.; Ahn, J.H.; Hwang, S. Simultaneous effect of temperature, cyanide and ammonia-oxidizing bacteria concentrations on ammonia oxidation. J. Ind. Microbiol. Biotechnol. 2008, 35, 1331–1338.
  • Lee, S.; Cho, K.; Lim, J.; Kim, W.; Hwang, S. Acclimation and activity of ammonia-oxidizing bacteria with respect to variations in zinc concentration, temperature, and microbial population. Bioresour. Technol. 2011, 102, 4196–4203.
  • Subrahmanyam, G.; Hu, H.W.; Zheng, Y.M.; Gattupalli, A.; He, J.Z.; Liu, Y.R. Response of ammonia oxidizing microbes to the stresses of arsenic and copper in two acidic alfisols. App. Soil Ecol. 2014, 77, 59–67.
  • Wett, B.; Rauch, W. The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater. Water Res. 2003, 37, 1100–1110.
  • Guisasola, A.; Petzet, S.; Baeza, J.A.; Carrera, J.; Lafuente, J. Inorganic carbon limitations on nitrification: Experimental assessment and modelling. Water Res. 2007, 41, 277–286.
  • Villaverde, S.; Garcia-Encina, P.A.; Fdz-Polanco, F. Influence of pH over nitrifying biofilm activity in submerged biofilters. Water Res. 1997, 31, 1180–1186.
  • Green, M.; Ruskol, Y.; Tarre, S.; Loewenthal, R.E. Nitrification utilizing CaCO3 as the buffering agent. Environ. Technol. 2002, 23, 303–308.
  • Whang, L.M.; Yang, K.H.; Yang, Y.F.; Han, Y.L.; Chen, Y.J.; Cheng, S.S. Microbial ecology and performance of ammonia oxidizing bacteria (AOB) in biological processes treating petrochemical wastewater with high strength of ammonia: effect of Na2CO3 addition. Water Sci. Technol. 2009, 59, 223–231.
  • Tokutomi, T.; Shibayama, C.; Soda, S.; Ike, M. A novel control method for nitritation: The domination of ammonia-oxidizing bacteria by high concentrations of inorganic carbon in an airlift-fluidized bed reactor. Water Res. 2010, 44, 4195–4203.
  • Fukushima, T.; Whang, L.-M.; Chiang, T.-Y.; Lin, Y.-H.; Chevalier, L.R.; Chen, M.-C.; Wu, Y.-J. Nitrifying bacterial community structures and their nitrification performance under sufficient and limited inorganic carbon conditions. Appl. Microbiol. Biotechnol. 2013, 14, 6613–6523.
  • Bassin, J.O.P.; Dezotti, M.; Sant’anna, G.L. Jr. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor. J. Hazard. Mater. 2011, 185, 242–248.
  • Rouse, J.D.; Yazaki, D.; Cheng, Y.; Koyama, T.; Furukawa, K. Swim-bed technology as an innovative attached-growth process for high-rate wastewater treatment. Jpn. J. Water Treat. Biol. 2004, 40, 115–124.
  • Rusten, B.; Eikebrokk, B.; Ulgenes, Y.; Lygren, E. Design and operations of the Kaldnes moving bed biofilm reactors. Aquacultur. Eng. 2006, 34, 322–331.
  • Bai, X.; Ye, Z.F.; Li, Y.F.; Zhou, L.C.; Yang, L.Q. Preparation of crosslinked macroporous PVA foam carrier for immobilization of microorganisms. Proc. Biochem. 2010, 45, 60–66.
  • Flemming, H. C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633.
  • Kindaichi, T.; Ito, T.; Okabe, S. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl. Environ. Microbiol. 2004, 70, 1641–1650.
  • Gieseke, A.; Bjerrum, L.; Wagner, M.; Amann, R. Structure and activity of multiple nitrifying bacterial populations co-existing in a biofilm. Environ. Microbiol. 2003, 5, 355–369.
  • Sakano, Y.; Kerkhof, L. Assessment of changes in microbial community structure during operation of an ammonia biofilter with molecular tools. Appl. Environ. Microbiol. 1998, 64, 4877–4882.
  • Dolinšek, J.; Lagkouvardos, I.; Wanek, W.; Wagner, M.; Daims, H. Interactions of nitrifying bacteria and heterotrophs: identification of a Micavibrio-like putative predator of Nitrospira spp. Appl. Environ. Microbiol. 2013, 79, 2027–2037.
  • Hanaki, K.; Wantawin, C.; Ohgaki, S. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Res. 1990, 24, 297–302.
  • Ruiz, G.; Jeison, D.; Chamy, R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res. 2003, 37, 1371–1377.
  • Chae, K. J.; Kim, S. M.; Oh, S. E.; Ren, X.; Lee, J.; Kim, I. S. Spatial distribution and viability of nitrifying, denitrifying and ANAMMOX bacteria in biofilms of sponge media retrieved from a full-scale biological nutrient removal plant. Bioproc. Biosys. Eng. 2012, 35, 1157–1165.
  • So, M.; Naka, D.; Goel, R.; Yasui, H. Model development of a sponge carrier process using CFD-DEM with permeable particles. J. Water Environ. Tech. 2012, 10, 193–204.
  • Chandran, K.; Smets, B.F. Single-step nitrification models erroneously describe batch ammonia oxidation profiles when nitrite oxidation becomes rate limiting. Biotech. Bioeng. 2000, 68, 396–406.
  • Bae, H.; Park, J.-H.; Jun, K.-S.; Jung, J.-Y. The community analysis of ammonia-oxidizing bacteria in wastewater treatment plants revealed by the combination of double labeled T-RFLP and sequencing. J. Environ. Sci. Health Part A, 2011, 46, 345–354.
  • Limpiyakorn, T.; Shinohara, Y.; Kurisu, F.; Yagi, O. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiol. Ecol. 2005, 54, 205–217.
  • Siripong, S.; Rittmann, B.E. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Res. 2007, 41, 1110–1120.
  • Dionisi, H.M.; Layton, A.C.; Harms, G.; Gregory, I.R.; Robinson, K.G.; Sayler, G.S. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl. Environ. Microbiol. 2002, 68, 245–253.
  • Gieseke, A.; Purkhold, U.; Wagner, M.; Amann, R.; Schramm, A. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl. Environ. Microbiol. 2001, 67, 1351–1362.
  • Harms, G.; Layton, A.C.; Dionisi, H.M.; Gregory, I.R.; Garrett, V.M.; Hawkins, S.A.; Robinson, K.G.; Sayler, G.S. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 2003, 37, 343–351.
  • Koops, H.P.; Böttcher, B.; Möller, U.C.; Pommerening-Röser, A.; Stehr, G. Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov.. J. Gen. Microbiol. 1991, 137, 1689–1699.
  • Koops, H.P.; Purkhold, U.; Pommerening-Röser, A.; Timmermann, G.; Wagner, M. The lithoautotrophic ammonia-oxidizing bacteria. The prokaryotes. 2006, 5, 778–811.
  • Koops, H.P.; Pommerening-Röser, A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol. Ecol. 2001, 37, 1–9.
  • Friedrich, U.; Prior, K.; Altendorf, K.; Lipski, A. High bacterial diversity of a waste gas-degrading community in an industrial biofilter as shown by a 16S rDNA clone library. Environ. Microbiol. 2002, 4, 721–734.
  • Montràs, A.; Pycke, B.; Boon, N.; Gòdia, F.; Mergeay, M.; Hendrickx, L.; Pérez, J. Distribution of Nitrosomonas europaea and Nitrobacter winogradskyi in an autotrophic nitrifying biofilm reactor as depicted by molecular analyses and mathematical modelling. Water Res. 2008, 42, 1700–1714.
  • Schramm, A.; de Beer, D.; van denHeuvel, J.C.; Ottengraf, S.; Amann, R. Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Appl. Environ. Microbiol. 1999, 65, 3690–3696.
  • Sangwan, P.; Chen, X.; Hugenholtz, P.; Janssen, P.H. Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl. Environ. Microbiol. 2004, 70, 5875–5881.
  • Flemming, H.C.; Wingender, J. Relevance of microbial extracellular polymeric substances (EPSs)-Part I: Structural and ecological aspects. Water Sci. Technol. 2001, 43, 1–8.
  • Kämpfer, P.; Müller, C.; Mau, M.; Neef, A.; Auling, G.; Busse, H.J.; Osborn, A.M.; Stolz, A. Description of Pseudaminobacter gen. nov. with two new species, Pseudaminobacter salicylatoxidans sp. nov. and Pseudaminobacter defluvii sp. nov.. Int. J. Syst. Bacteriol. 1999, 49, 887–897.
  • Frølund, B.; Palmgren, R.; Keiding, K.; Nielsen, P.H. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 1996, 30, 1749–1758.
  • Tago, Y.; Yokota, A. Comamonas badia sp. nov., a floc-forming bacterium isolated from activated sludge. J. Gen. Appl. Microbiol. 2004, 50, 243–248.
  • Biswas, R.; Bagchi, S.; Bihariya, P.; Das, A.; Nandy, T. Stability and microbial community structure of a partial nitrifying fixed-film bioreactor in long run. Bioresour. Technol. 2011, 102, 2487–2494.
  • Sakano, Y.; Kerkhof, L. Assessment of changes in microbial community structure during operation of an ammonia biofilter with molecular tools. Appl. Environ. Microbiol. 1998, 64, 4877–4882.
  • Velázquez, E.; Igual, J.M.; Willems, A.; Fernández, M.P.; Muñoz, E.; Mateos, P.F.; Abril, A.; Toro, N.; Normand, P.; Cervantes, E.; Gillis, M.; Martínez-Molina, E. Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int. J. Syst. Evol. Microbiol. 2001, 51, 1011–1021.
  • Pal, L.; Kraigher, B.; Brajer-Humar, B.; Levstek, M.; Mandic-Mulec, I. Total bacterial and ammonia-oxidizer community structure in moving bed biofilm reactors treating municipal wastewater and inorganic synthetic wastewater. Bioresour. Technol. 2012, 110, 135–143.
  • Paul, D.; Bridges, S.; Burgess, S.C.; Dandass, Y.; Lawrence, M.L. Genome sequence of the chemolithoautotrophic bacterium Oligotropha carboxidovorans OM5T. J. Bacteriol. 2008, 190, 5531–5532.
  • Vaz-Moreira, I.; Faria, C.; Lopes, A.R.; Svensson, L.A.; Moore, E.R.B.; Nunes, O.C.; Manaia, C.M. Shinella fusca sp. nov., isolated from domestic waste compost. Int. J. Syst. Evol. Microbiol. 2010, 60, 144–148.
  • An, D.S.; Im, W.T.; Yang, H.C.; Lee, S.T. Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov.. Int. J. Syst. Evol. Microbiol. 2006, 56, 443–448.
  • Santos, P.; Pinhal, I.; Rainey, F.A.; Empadinhas, N.; Costa, J.; Fields, B.; Benson, R.; Verissimo, A.; da Costa, M.S. Gamma-Proteobacteria Aquicella lusitana gen. nov., sp. nov., and Aquicella siphonis sp. nov. infect Protozoa and require activated charcoal for growth in laboratory media. Appl. Environ. Microbiol. 2003, 69, 6533–6540.
  • Dastager, S.G.; Lee, J.C.; Ju, Y.J.; Park, D.J.; Kim, C.J. Cryobacterium mesophilum sp. nov., a novel mesophilic bacterium. Int. J. Syst. Evol. Microbiol. 2008, 58, 1241–1244.
  • Baytshtok, V.; Kim, S.; Yu, R.; Park, H.; Chandran, K. Molecular and biokinetic characterization of methylotrophic denitrification using nitrate and nitrite as terminal electron acceptors. Water Sci. Technol. 2008, 58, 359–365.
  • Osaka, T.; Ebie, Y.; Tsuneda, S.; Inamori, Y. Identification of the bacterial community involved in methane-dependent denitrification in activated sludge using DNA stable-isotope probing. FEMS Microbiol. Ecol. 2008, 64, 494–506.
  • Zhao, H.W.; Mavinic, D.S.; Oldham, W.K.; Koch, F.A. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage. Water Res. 1999, 33, 961–970.
  • Takaya, N.; Catalan-Sakairi, M.A.B.; Sakaguchi, Y.; Kato, I.; Zhou, Z.; Shoun, H. Aerobic denitrifying bacteria that produce low levels of nitrous oxide. App. Environ. Microbiol. 2003, 69, 3152–3157.
  • Zhang, D.C.; Liu, H.C.; Xin, Y.H.; Zhou, Y.G.; Schinner, F.; Margesin, R. Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 2010, 60, 1581–1584.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.