Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 8
322
Views
19
CrossRef citations to date
0
Altmetric
ARTICLES

Toxicity of zero-valent iron nanoparticles to a trichloroethylene-degrading groundwater microbial community

, , &
Pages 794-805 | Received 11 Oct 2014, Published online: 01 Jun 2015

References

  • Stroo, H.F.; Ward, C.H. In In Situ Remediation of Chlorinated Solvent Plumes; Taylor & Francis: New York, 2010.
  • US Geological Survey. Natural attenuation of chlorinated volatile organic compounds in a freshwater tidal wetland. In U.S.G.S. U.S. Department of the Interior (Ed.); Aberdeen Proving Ground, MD, 1997.
  • US Geological Survey. Natural attenuation of chlorinated volatile organic compounds in ground water at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington. In U.S.G.S. U.S. Department of the Interior (Ed.); Tacoma, WA, 2002.
  • Rivett, M.O.;Wealthall, G.P.; Dearden, R.A.; McAlary, T.A. Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones. J. Contam. Hydrol. 2011, 123, 130–156.
  • Rathbun, R.E. Transport, behavior, and fate of volatile organic compounds in streams. Environ. Sci. Technol. 2000, 30, 129–295.
  • Chapman, S.W.; Parker, B.L.; Cherry, J.A.; Aravena, R.; Hunkeler, D. Groundwater-surface water interaction and its role on tce groundwater plume attenuation. J. Contam. Hydrol. 2007, 91, 203–232.
  • U.S. Deparment of Health and Human Services. Toxicological profile for trichloroethylene. In P.H.S. U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR) (Ed.); Atlanta, GA, 1997.
  • US Environmental Protection Agency. TCE removal from contaminated soil and groundwater. In O.o.R.a.D. U.S. Environmental Protection Agency (Ed.); Ada, OK, 1992.
  • Schwarzenbach, R.P.; Gschwend, P.M.; Imboden, D.M. In Environmental Organic Chemistry, 2nd ed.; Taylor & Francis.: Hoboken, NJ, 2003.
  • Harkness, M.; Fisher, A.; Lee, M.D.; Mack, E.E.; Payne, J.A.; Dworatzek, S.; Roberts, J.; Acheson, C.; Herrmann, R.; Possolo, A. Use of statistical tools to evaluate the reductive dechlorination of high levels of tce in microcosm studies. J. Contam. Hydrol. 2012, 131, 100–118.
  • Witt, M.E.; Klecka, G.M.; Lutz, E.J.; Ei, T.A.; Grosso, N.R.; Chapelle, F.H. Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: Groundwater biogeochemistry. J. Contam. Hydrol. 2002, 57, 61–80.
  • Fantroussi, S.E.; Naveau, H.; Agathos, S.N. Anaerobic dechlorinating bacteria. Biotechnol. Prog. 1998, 14, 167–188.
  • Dennis, P.C.; Sleep, B.E.; Fulthorpe, R.R.; Liss, S.N. Phylogenetic analysis of bacterial populations in an anaerobic microbial consortium capable of degrading saturation concentrations of tetrachloroethylene. Can. J. Microbiol. 2003, 49, 15–27.
  • Henderson, A.D.; Demond, A.H. Long-term performance of zero-valent iron permeable reactive barriers: A critical review. Environ. Eng. Sci. 2007, 24, 401–423.
  • American Society of Civil Engineers. Zero-valent iron reactive materials for hazardous waste and inorganics removal; Taylor & Francis: Reston, VA, 2007.
  • Bastiaens, L. (Ed.) Permeable reactive barriers & reactive zones. In Vision on Technology; Proceedings 4th international symposium; VITO NV, Belgium 2010.
  • Weber, E.J. Iron-mediated reductive transformations: Investigation of reaction mechanism. Environ. Sci. Technol. 1996, 30, 716–719.
  • Song, H.; Carraway, E.R. Reduction of chlorinated ethanes by nanosized zero-valent iron: Kinetics, pathways, and effects of reaction conditions. Environ. Sci. Technol. 2005, 39, 6237–6245.
  • Zhang, Z.; Hao, Z.; Yang, Y.; Zhang, J.; Wang, Q.; Xu, X. Reductive denitrification kinetics of nitrite by zero-valent iron. Desalination 2010, 252, 158–162.
  • Grieger, K.D.; Fjordboge, A.; Hartmann, N.B.; Eriksson, E. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off? J. Contam. Hydrol. 2010, 118, 165–183.
  • Wiesner, M.R.; Lowry, G.V.; Jones, K.L.; Hochella, M.F.; Di Giulio, R.T.; Casman, E.; Bernhardt, E.S. Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ. Sci. Technol. 2009, 43, 6458–6462.
  • Neal, A.L. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 2008, 17, 362–371.
  • Diao, M.; Yao, M. Use of zero-valent iron nanoparticles in inactivating microbes. Water Res. 2009, 43, 5243–5251.
  • Lee, C.; Kim, J.Y.; Lee, W.I.; Nelson, K.L.; Yoon, J.; Sedlak, D.L. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol. 2008, 42, 4927–4933.
  • Xiu, Z.; Gregory, K.B.; Lowry, G.V.; Alvarez, P.J.J. Effect of bare and coated nanoscale zerovalent iron on tcea and vcra gene expression in Dehalococcoides spp. Environ. Sci. Technol. 2010, 44, 7647–7651.
  • Fajardo, C.; Ortiz, L.T.; Rodriguez-Membibre, M.L.; Nande, M.; Lobo, M.C.; Martin, M. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere 2012, 86, 802–808.
  • Barnes, R.J.; Van der Gast, C.J.; Riba, O.; Lehtovirta, L.E.; Prosser, J.I.; Dobson, P.J.; Thompson, I.P. The impact of zero-valent iron nanoparticles on a river water bacterial community. J. Hazard. Mater. 2010, 184, 73–80.
  • Li, Z.; Greden, K.; Alvarez, P.J.J.; Gregory, K.B.; Lowry, G.V. Adsorbed polymer and nom limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ. Sci. Technol. 2010, 44, 3462–3467.
  • I. BMT Entech. Remedial investigation report for the beaverdam road landfill. In U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS); Beltsville, MD, 2008.
  • Zhang, W. Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 2003, 5, 323–332.
  • Qiagen Manual. RNeasy Miny Handbook, June 2012. Available at www.Qiagen.com. (accessed Jun 2013)
  • Fierer, N.; Jackson, J.A.; Vilgalys, R.; Jackson, R.B. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 2005, 71, 4117–4120.
  • Yarwood, S.A.; Bottomley, P.J.; Myrold, D.D. Soil microbial communities associated with douglas-fir and red alder stands at high- and low-productivity forest sites in Oregon, USA. Microb. Ecol. 2010, 60, 606–617.
  • Power SYBR Green PCR Master Mix and Power SYBR Green RT-PCR reagents kit user guide. In Life Technologies; Carlsbad, CA, 2011. Available at tools.lifetechnologies.com (accessed Jun 2013).
  • Eilert, K.D.; Foran, D.R. Polymerase resistance to polymerase chain reaction inhibitors in bone. J. Forensic Sci. 2009, 54, 1001–1007.
  • Teng, F.; Guan, Y.; Zhu, W. A simple and effective method to overcome the inhibition of Fe to PCR. J. Microbiol. Meth. 2008, 75, 362–364.
  • van Pelt-Verkuil, E.; van Belkum, A.; Hays, J.P. Principles and Technical Aspects of PCR Amplification; Taylor & Francis: Netherlands, 2008.
  • GenEx 5 efficiency correction. In MultiD Analyses; Sweden, 2006. Available at www.gene-quantification.de/genex-user-guide.pdf (accessed May 2013).
  • Nielsen, D. M. (Ed.) Handbook of Environmental Site Characterization and Ground-water Monitoring. I Taylor & Francis: Boca Raton, FL, 2006; 616–627.
  • Gaal, R.; Barlett, M.S.; Ross, W.; Turnbough, C.L.; Gourse, R.L. Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science 1997, 278, 2092–2097.
  • Kemp, P.F.; Lee, S.; LaRoche, J. Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl. Environ. Microbiol. 1993, 59, 2594–2601.
  • Klindworth, A.; Pruesse, E.; Schweer, T.; Pepliers, J.; Quast, C.; Horn, M.; Glockner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucl. Acids Res. 2012, 41, 1–11.
  • Horz, H.P.; Vianna, M.E.; Gomes, B.P.F.A.; Conrads, G. Evaluation of universal probes and primer sets for assessing total bacterial load in clinical samples: General implications and practical use in endodontic antimicrobial therapy. J. Clin. Microbiol. 2005, 43, 5332–5337.
  • O’Flaherty, V.; Mahony, T.; O’Kennedy, R.; Colleran, E. Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Proc. Biochem. 1998, 33, 555–569.
  • Lowe, S.E.; Jain, M.K.; Zeikus, G. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microb. Rev. 1993, 57, 451–509.
  • Watt, B.; Brown, F.V. Effect of the growth of anaerobic bacteria on the surface pH of solid media. J. Clin. Pathol. 1985, 38, 565–569.
  • Vasilian, A.; Trchunian, A. Effect of the medium redox potential on the growth and metabolism of anaerobic bacteria. Biofizika 2008, 53, 281–293.
  • Wang, Z.P.; DeLaune, R.D.; Patrick, W.H.; Masscheleyn, P.H. Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci. Soc. Amer. 1993, 57, 382–385.
  • Crane, R.A.; Scott, T.B. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. J. Hazard. Mater. 2012, 211, 112–125.
  • Baker, C.; Pradhan, A.; Pakstis, L.; Darrin, P.J.; Ismat, S.S. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechno. 2005, 5, 244–249.
  • Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007, 18, 1–9.
  • Kim, S.J.; Kuk, E.; Yu, K.N.; Kim, J.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.; Kim, Y.; Lee, Y.; Jeong, H.; Cho, M. Antimicrobial effects of silver nanoparticles. Nanomed.-Nanotechnol. 2007, 3, 95–101.
  • Lu, Z.; Rong, K.; Li, J.; Yang, H.; Chen, R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J. Mater. Sci. - Mater. Med. 2013, 24, 1465–1471.
  • Du, H.; Lo, T.; Sitompul, J.; Chang, M.W. Systems-level analysis of Escherichia coli response to silver nanoparticles: The roles of anaerobic respiration in microbial resistance. Biochem. Biophys. Res. Comm. 2012, 424, 657–662.
  • Doolette, C.L.; McLaughlin, M.J.; Kirby, J.K.; Batstone, D.J.; Harris, H.H.; Ge, H.; Cornelis, G. Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities, Chem. Cent. J. 2013, 7, 46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.