Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 8
299
Views
11
CrossRef citations to date
0
Altmetric
ARTICLES

Optimization of simultaneous electrochemical determination of Cd(II), Pb(II), Cu(II) and Hg(II) at carbon nanotube-modified graphite electrodes

, &
Pages 874-881 | Received 04 Oct 2014, Published online: 01 Jun 2015

References

  • Duffus, J.H.; Worth, H.G.J. Metals. In Fundamental Toxicology for Chemists; Duffus, J.H.; Worth, H.G.J., Eds.; Taylor & Francis: Cambridge, UK, 1996; 175–176.
  • Bockris, J.O’M. Mercury in the environment. In Environmental Chemistry; Bockris J.O´M., Ed.; Taylor & Francis: New York, NY, 1977; 452–460.
  • Wasiak, W.; Ciszewska, W.; Ciszewskib, A. Hair analysis. Part 1: Differential pulse anodic stripping voltammetric determination of lead, cadmium, zinc and copper in human hair samples of persons in permanent contact with a polluted workplace environment. Anal. Chim. Acta 1996, 335, 201–207.
  • Durana, C.; Gundogdua, A.; Bulutb, V.N.; Soylakc, M.; Elcid, L.; Sentürka, H.B.; Tüfekcia, M. Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS). J. Hazard. Mater. 2007, 146, 347–355.
  • Chen, J.; Teo, K.Ch. Determination of cadmium, copper, lead and zinc in water samples by flame atomic absorption spectrometry after cloud point extraction. Anal. Chim. Acta 2001, 450, 215–222.
  • Nowka, R.; Marr, I.L.; Ansari, T.M.; Müller, H. Direct analysis of solid samples by GFAAS – determination of trace heavy metals in barytes. Fresen. J. Anal. Chem. 1999, 364, 533–540.
  • Sen, I.; Shandil, A.; Shrivastava, V.S. Study for determination of heavy metals in fish species of the River Yamuna (Delhi) by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Adv. Appl. Sci. Res. 2011, 2, 161–166.
  • Uysala, K.; Emreb, Y.; Kösea, E. The determination of heavy metal accumulation ratios in muscle, skin and gills of some migratory fish species by inductively coupled plasma-optical emission spectrometry (ICP-OES) in Beymelek Lagoon (Antalya/Turkey). Microchem. J. 2008, 90, 67–70.
  • Gomeza, M.R.; Ceruttia, S.; Sombraa, L.L.; Silvaa, M.F.; Martíneza, L.D. Determination of heavy metals for the quality control in argentinian herbal medicines by ETAAS and ICP-OES. Food Chem. Toxicol. 2007, 45, 1060–1064.
  • Goullé, J.P.; Mahieu, L.; Castermant, J.; Neveu, N.; Bonneau, L.; Lainé, G.; Bouige, D.; Lacroix, Ch. Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair: Reference values. Forens. Sci. Int. 2005, 153, 39–44.
  • Pereiraa, J.S.F.; Moraesa, D.P.; Antesa, F.G.; Diehla, L.O.; Santosb, M.F.P.; Guimarãesc, R.C.L.; Fonsecac, T.C.O.; Dresslera, V.D.; Floresa, E.M.M. Determination of metals and metalloids in light and heavy crude oil by ICP-MS after digestion by microwave-induced combustion. Microchem. J. 2010, 96, 4–11.
  • Baysal, A.; Ozbek, N.; Akman, S. Determination of trace metals in waste water and their removal processes. In In Waste Water—Treatment Technologies and Recent Analytical Developments; Einschlag, F.S.G.; Carlos, L., Eds.; InTech: Rijeka, Croatia; 2013; 145–171.
  • Scholz, F. Electroanalytical techniques. In: Electroanalytical Methods, Stripping Analysis: Principles, Instrumentation and Applications; Scholz, F., Eds.; Taylor & Francis, Germany, 2002; 49–240.
  • Ahammad, A.J.; Lee, J.J.; Rahman, M.A. Electrochemical sensors based on carbon nanotubes. Sensors 2009, 9, 2289–2319.
  • Dai, L. Electrochemical properties of carbon nanotubes. In Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Device Applications; Dai, L., Eds.; Taylor & Francis: Amsterdam, The Netherlands, 2006; 297–323.
  • Kavan, L.; Dunsch, L.J. Electrochemistry of carbon nanotubes. In: Carbon Nanotubes, Advanced Topics in the Synthesis, Structure, Properties and Application; Jorio, A.; Dresselhaus, G.; Mildred S.; Dresselhaus, M.S., Eds.; Taylor & Francis, New York, Germany, 2008; 567–603.
  • McCreery, R.L. Carbon electrodes: structural effects on electron transfer kinetics. In: Electroanalytical Chemistry; Bard, A.J., Eds.; Taylor & Francis: New York, 1991; 221–374.
  • Zhang, L.; Fang, M. Nanomaterials in pollution trace detection and environmental improvement. Nano Today 2010, 5, 128–142.
  • Aragay, G.; Merkoci, A. Nanomaterials applications in electrochemical detection of heavy metals. Electrochim. Acta 2012, 84, 49–61.
  • Vicentini, F.C.; Silva, T.A.; Pellatieri, A.; Janegitz, B.C.; Fatibello-Filho, O.; Faria, R.C. Pb(II) determination in natural water using a carbon nanotubes paste electode modified with crosslinked chitosan. Microchem. J. 2014, 116, 191–196.
  • Arduini, F.; Calvo, J.Q.; Amine, A.; Palleschi, G.; Moscone, D. Bismuth-modified electrodes for lead detection. Trends Anal. Chem. 2010, 29, 1295–1304.
  • Wang, Z.; Liu, E. Graphene ultrathin film electrode for detection of lead ions in acetate buffer solution. Talanta 2013, 103, 47–55.
  • Wang, Z.; Liu, E.; Zhao, X. Glassy carbon electrode modified by conductive polyaniline coating for determination of trace lead and cadmium ions in acetate buffer solution. Thin Solid Films 2011, 519, 5285–5289.
  • Kokkinos, Ch.; Economou, A. Disposable Nafion-modified micro-fabricated bismuth-film sensors for voltammetric stripping analysis of trace metals in the presence of surfactants. Talanta 2011, 84, 696–701.
  • Prabakar, S.J.R.; Sakthivel, C.; Narayanan, S.S. Hg(II) immobilized MWCNT graphite electrode for the anodic stripping voltammetric determination of lead and cadmium. Talanta 2011, 85, 290–297.
  • Afkhami, A.; Bagheri, H.; Khoshsafar, H.; Saber-Tehrani, M.; Tabatabaee, M.; Shirzadmehr, A. Simultaneous trace-levels determination of Hg(II) and Pb(II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and a new synthesized Schiff base. Anal. Chim. Acta 2012, 746, 98–106.
  • Hwang, G.H.; Han, W.K.; Park, J.S.; Kang, S.G. Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 2008, 76, 301–308.
  • Injang, U.; Noyrod, P.; Siangproh, W.; Dungchai, W.; Motomizu, S.; Chailapakul, O. Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes. Anal. Chim. Acta 2010, 668, 54–60.
  • Alves, G.M.S.; Magalhaes, J.M.C.S.; Salaun, P.; van der Berg, C.M.G.; Soares, H.M.V.M. Simultaneous electrochemical determination of arsenic, copper, lead and mercury in unpolluted fresh waters using a vibrating gold microwire electrode. Anal. Chim. Acta 2011, 703, 1–7.
  • Chen, L.; Su, Z.; He, X.; Liu, Y.; Qin, C.; Zhou, Y.; Li, Z.; Wang, L.; Xie, Q.; Yao, S. Square wave anodic stripping voltammetric determination of Cd and Pb ions at a Bi/Nafion/thiolated polyaniline/glassy carbon electrode. Electrochem. Commun. 2012, 15, 34–37.
  • Morton, J.; Havens, N.; Mugweru, A.; Wanekaya, A.K. Detection of Trace Heavy Metal Ions Using Carbon Nanotube-Modified Electrodes. Electroanalysis 2009, 21, 1597–1603.
  • Guo, X.; Yun, Y.; Shanov, V.N.; Halsall, H.B.; Heineman, W.R. Determination of Trace Metals by Anodic Stripping Voltammetry Using a Carbon Nanotube Tower Electrode. Electroanalysis 2011, 23, 1252–1259.
  • Wang, Z.; Liu, E.; Gu, D.; Wang, Y. Glassy carbon electrode coated with polyaniline-functionalized carbon nanotubes for detection of trace lead in acetate solution. Thin Solid Films 2011, 519, 5280–5284.
  • Wang, B.; Chang, Y.; Zhi, L. High yield production of graphene and its improved property in detecting heavy metal ions. New Carbon Mater. 2011, 26, 31–35.
  • Gong, J.; Zhou, T.; Song, D.; Zhang, L. Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II). Sens. Actuators B 2010, 150, 491–497.
  • Sosa, V.; Barceló, C.; Serrano, N.; Arino, C.; Díaz-Cruz, J.M.; Esteban, M. Antimony film screen-printed carbon electrode for stripping analysis of Cd(II), Pb(II), and Cu(II) in natural samples. Anal. Chim. Acta 2015, 855, 34–40.
  • Injang, U.; Noyrod, P.; Siangproh, W.; Dungchai, W.; Motomizu, S.; Chailapakul, O. Determination of trace heavy metals in herbs by sequential injection nalysis-anodic stripping voltammetry using screen-printed carbon anotubes electrodes. Anal. Chim. Acta 2010, 668, 54–60.
  • Arduini, F.; Majorani, C.; Amine, A.; Moscone, D.; Palleschi, G. Hg2+ detection by measuring thiol groups with a highly sensitive screen-printed electrode modified with a nanostructured carbon black film. Electrochim. Acta 2011, 56, 4209–4215.
  • Aragay, G.; Pons, J.; Merkoc, A. Enhanced electrochemical detection of heavy metals at heated graphite nanoparticle-based screen-printed electrodes. J. Mater. Chem. 2011, 21, 4326–4331.
  • Arduini, F.; Calvo, J.Q.; Amine, A.; Palleschi, G.; Moscone, D. Bismuth-modified electrodes for lead detection. Trends in Anal. Chem. 2010, 29, 1295–1304.
  • Pikna, L'.; Kovačová, Z.; Heželová, M. Performance Characteristics of Modified Paraffin Impregnated Graphite Electrodes-Testing of Different Carbon Nanotubes Binders. Part. Sci. Technol. 2014, 32, 602–607.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.