Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 13
233
Views
6
CrossRef citations to date
0
Altmetric
ARTICLES

Optimization and modeling of reduction of wastewater sludge water content and turbidity removal using magnetic iron oxide nanoparticles (MION)

&
Pages 1307-1315 | Received 22 Dec 2014, Published online: 16 Jul 2015

References

  • Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. 2008, 34, 755–781.
  • Saveyn, H.; Meersseman, S.; Thas, O.; Van, D.M.P. Influence of polyelectrolyte characteristics on pressure-driven physicochemical dewatering. Colloid Surf. A: Physicochem. Eng. Aspects. 2005, 262, 40–51.
  • Mu, H.; Chen, Y.; Xiao, N. Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2, ZnO) on waste activated sludge anaerobic digestion. Bioresour. Technol. 2011, 102(22), 10305–10311.
  • Afkhami, A.; Saber-Tehrani, M.; Bagheri, H. Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution. Desalination. 2010, 263(1–3), 240–248.
  • Mahdavian, A. R.; Mirrahimi, MAS. Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem. Eng. J. 2010, 159(1–3), 264–271.
  • Carabante, I.; Grahn, M.; Holmgren, A.; Kumpiene, J.; Hedlund, J. Adsorption of As (V) on iron oxide nanoparticle films studied by in situ ATR–FTIR spectroscopy. Colloids Surf A. 2009, 346(1–3), 106–113.
  • Fan, F.L.; Qin, Z.; Bai, J.; Rong, W.D.; Fan, F.Y.; Tian, W. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4–SiO2 composite particles. J. Environ. Radioact. 2012, 106, 40–46.
  • Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X.; Liu, Z.F. Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. Sci. Total Environ. 2012, 424, 1–10.
  • Hao, Y.M.; Man, C.; Hu, Z. B. Effective removal of Cu(II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J. Hazard. Mater. 2010, 184(1–3), 392–399.
  • Lakshmanan, R.; Rajaraman, P.; Okoli, C.; Boutonnet, M.; Järås, S.; Rajarao-Kuttuva, G. Application of magnetic nanoparticles for wastewater treatment using response surface methodology. CTSI Conference Proceedings, Washington, D.C., May 12–16, 2013, 184–189.
  • Cho, I.H.; Zoh, K.D. Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design. Dyes Pigm. 2007, 75, 533–543.
  • Birjandia, N.; Younesia, H.; Bahramifara, N.; Ghafari, S.; Zinatizadehc, A. A.; Sethupathid, S. Optimization of coagulation-flocculation treatment on paper-recycling wastewater: Application of response surface methodology. J. Environ. Sci. Health Pt. A Toxic/Hazard. Substan. Environ. Eng. 2013, 48(12), 1573–1582.
  • Khataeea, A.R.; Kasirib, M.B.; Alidokhtac, L. Application of response surface methodology in the optimization of photocatalytic removal of environmental pollutants using nanocatalysts. Environ. Technol. 2011, 32(5), 1669–1684.
  • Kandpal, N.D.; Sah, N.; Loshali, R.; Joshi, R.; Prasad, J. Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. J. Sci. Ind. Res. 2014, 73, 87–90.
  • Tran, G.D.L.; Nguyen, X.P.; Vu, D.H.; Nguyen, N.T.; Tran, V.H.; Mai, T.T.T.; Nguyen, N.T.; Le, Q.D.; Nguyen, T.N.; Ba, T.C. Some biomedical applications of chitosan-based hybrid nanomaterials. Advances in natural sciences: J. Nano. Nanotech. 2011, 2, 1–6.
  • Okoli, C.; Fornara, A.; Qin, J.; Toprak, M.S.; Dalhammar, G.; Muhammed, M.; Rajarao, G.K. Characterization of superparamagnetic iron oxide nanoparticles and its application in protein purification. J. Nano. Nanotech. 2011, 11, 10201–10206.
  • Lakshmanan, R.; Rajarao, G.K. Effective water content reduction in sewage wastewater sludge using magnetic nanoparticles. Bioresour. Tech. 2014, 153, 333–339.
  • Hu, Y.; Li, Y.; Liu, R.; Tan, W.; Li, G. Magnetic molecularly imprinted polymer beads prepared by microwave heating for selective enrichment of ß-agonists in pork and pig liver samples. Talanta 2011, 84, 462–470.
  • Tuan, P.A.; Sillappää, M. Migration of ions and organic matter during electrode watering of anaerobic sludge. J. Hazard. Mater. 2010, 173, 54–61.
  • Le Zhang, X.; Niu, H.Y.; Zhang, S.X.; Cai, Y.Q. Preparation of a chitosan-coated C18-functionalized magnetite nanoparticle sorbent for extraction of phthalate ester compounds from environmental water samples. Anal. Bioanal. Chem. 2010, 397, 791–798.
  • American Public Health Association Publications (APHA). Standard Methods for the Examination of Water and Wastewater, 20th Ed.; American Public Health Association Publications: Washington, DC, 1998.
  • Khataee, A.R.; Zarei, M.; Fathinia, M.; Khobnasab Jafari, M.x Photocatalytic degradation of an anthraquinone dye on immobilized TiO2 nanoparticles in a rectangular reactor: Destruction pathway and response surface approach. Desalination 2011, 268, 126–133.
  • Montgomery, D.C. Design and Analysis of Experiments, 6th ed. John Wiley & Sons: New York, 2005.
  • Myers, R.H.; Montgomery, D.C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd ed.; Wiley: New York, 2002.
  • Mahmoud, A.; Olivier, J.; Vaxelaire, J.; Hoadley, F.A. Electro-dewatering of wastewater sludge: influence of the operating conditions and their interactions effects. Water Res. 2011, 45, 2795–2810.
  • Yuan, C.; Weng, C.-H. Sludge dewatering by electrokinetic technique: effect of processing time and potential gradient. Adv. Environ. Res. 2003, 7, 727–732.
  • Han, R.; Liu, J.; Zhang, Y.; Fan, X.; Lu, W.; Wang, H. Dewatering and granulation of sewage sludge by biophysical drying and thermo-degradation performance of prepared sludge particles during succedent fast pyrolysis. Bioresour. Technol. 2012, 107, 429–436.
  • Winkler, M.-K.H.; Brennenbroek, M.H.; Horstink, F.H.; Van Loosdrecht, M.C.M.; Van de Pol, G.-J. The biodrying concept: an innovative technology creating energy from sewage sludge. Bioresour. Technol. 2013, 147, 124–129.
  • Walsh, M.E.; Zhao, N.; Gagnon, G.A. Development of a bench-scale immersed ultrafiltration apparatus for coagulation pretreatment experiments. J. Environ. Sci. Health Pt. A 2011, 46(4), 648–658.
  • Sarkar, B.; Chakrabarti, P.P.; Vijaykumar, A.; Kale, V. Wastewater treatment in dairy industries—Possibility of reuse. Desalination 2006, 195(1–3), 141–152.
  • Lu, A.-H.; Salabas, E.L.; Schuth, F. Magnetic nanoparticles: synthesis, protection, functionalization and application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244.
  • Tzoupanos, N.D.; Zouboulis, A.I. Characterization and application of novel coagulant reagent (polyaluminium silicate chloride) for the post treatment. In: Water Treatment Technologies for the Removal of High-Toxicity Pollutants; Vaclavikova, M., Vitale, K., Gallios, G.P., Ivanicova, L., Eds.; Springer: Slovak, Republic, 2008; 247–252.
  • Okoli, C.; Boutonnet, M.; Järås, S.; Rajarao-Kuttuva, G. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment. J. Nanopart. Res. 2012, 14, 1194–1203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.