Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 9
233
Views
0
CrossRef citations to date
0
Altmetric
ARTICLES

Removal of Pb (II), Cd (II), Cu (II) and trichloroethylene from water by Nanofer ZVI

&
Pages 901-912 | Received 23 Dec 2014, Published online: 10 Jun 2015

References

  • Wang, C.B.; Zhang, W.X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 1997, 31(7), 2154–2156.
  • Weile, Y. Iron-based Nanoparticles: Investigating The Nanostructure, Surface Chemistry and Reactions with Environment. Dissertation, Taylor & Francis, Bethlehem, Pennsylvania, 2011.
  • Zhang T.C.; Surampalli Y.R. Nanotechnologies for Water Environmental Application. In: Nanotechnologies for Water Environmental Application; Zhang T.C.; Surampalli Y.R; Lai, K.C.; Hu, Z.; Tyagi, R.D.; Lo, I.M., Eds. Taylor & Francis: Reston, VA, 2009; chapter 1.
  • Mueller, N.; Braun, J.; Bruns, J.; Černík, M.; Rissing, P.; Rickerby, D.; Nowack, B. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ. Sci. Pollut. Res. 2012, 19, 550–558.
  • Stone, V.; Nowack, B.; Baun, A.; Brink, N.; Kammer, F.; Dusinska, M.; Handy, R.; Hankin, S.; Hassellov, M.; Joner, E.; Fernandes, T. Nanomaterials for environmental studies: classification, reference material issues and strategies for physicochemical characterization. Sci. Total Environ. 2010, 408(7), 1745–1754.
  • Lenka, H.; Petra, J.; Zdenek, S. Nanoscal zero valent iron coating for subsurface application. Brno. Czech Repub. 2012, 10, 23–25.
  • Li, X.Q.; Zhang, W.X. Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir 2006, 22(10), 4638–4642.
  • Lowry, G.V.; Johnson, K.M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ. Sci. Technol. 2004, 38(19), 5208–5216.
  • Shokes, T.; Moller, G. Removal of dissolved heavy metals from acid rock drainage using iron metal. Environ. Sci. Technol. 2009, 33, 282–287.
  • Wilkin, T.R.; McNeil, S.M. Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage. Chemosphere 2003, 53(7), 715–725.
  • Eglal, M.; Ramamurthy, A.; Nanofer ZVI: Morphology, Particle characteristics, kinetics and applications. J. Nanomater. 2004, 1, 11–22.
  • Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R.; Lowry, G. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 2007, 41(1), 284–290.
  • Nurmi, T.; Tratnyek. G.; Sarathy, V.; Baer, R.; Amonette, E.; Pecher, K. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci. Technol. 2005, 39(5), 1221–1230.
  • Sun, Y.; Li, X.; Cao, X.J.; Zhang, W.; Wang, H.P. Characterization of zero-valent iron nanoparticles. Adv. Coll. Interf. Sci. 2006, 120(1–3), 47–56.
  • Li, X.-Q.; Elliott, D.; Zhang, W.-X. Zero-valent iron nanoparticles for abatement of environmental pollutants: material and engineering aspects. Crit. Rev. Solid State Mater. Sci. 2006, 31, 111–122.
  • Zhu, B.; Lim, T.T. Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: reactive sites, catalyst stability, particle aging, and regeneration. Environ. Sci. Technol. 2007, 41(21), 7523–7529.
  • Ho, Y.S. Effect of pH on lead removal from water using tree fern as the sorbent. Bioresour. Technol. 2005, 96(11), 1292–1296.
  • Brooks, M.C.; Wood, A.L.; Annable, M.D.; Hatfield, K.; Cho, J.; Holbert, C.; Rao, C.; Enfield, C.; Lynch, K.; Smith, R. Changes in contaminant mass discharge from DNAPL source mass depletion: Evaluation at two field sites. J. Contam. Hydrol. 2008, 102(1–2), 140–153.
  • Basu, N.B.; Rao, C.; Poyer, I.C.; Nandy, S.; Mallavarupu, M.; Naidu, R.; Davis, G.B.; and Patterson, B. Integration of traditional and innovative characterization techniques for flux-based assessment of dense non-aqueous phase liquid (DNAPL) sites. J. Contam. Hydrol. 2009, 105(3–4), 161–172.
  • Qiu, H.; Lu, L.V.; Pan, B.-C.; Zhang, Q.-J.; Zhang, W.-M.; Zhang, Q.-X. Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A. 2009, 10(5), 716–724.
  • El-Ashtoukhy, E.S.Z.; Amina, N.K.; Abdelwahab, O. Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent. Desalination 2008, 223(1–3), 162–173.
  • Kumar, V.; Kumar, M.; Jha, M.K.; Jeong, J.; Jae, c.; Lee, J.C. Solvent extraction of cadmium from sulfatesolution with di- (2-ethylhexyl)phosphoric acid diluted in kerosene. Hydrometallurgy 2009, 96(3), 230–234.
  • Li, S.L.; Yan, W.L.; Zhang, W.X. Solvent-free production of nanoscale zerovalent iron (nZVI) with precision milling. Green Chem. 2009, 11(10), 1618–1626.
  • Kocaoba, S.; Akcin, G. Removal of chromium (III) and cadmium (II) from aqueous solutions. Desalination 2005, 180(1–3), 151–156.
  • Jeon, B.-H.; Dempsey, B.A.; Burgos, W.D.; Royer, R.A. Sorption kinetics of Fe(II), Zn(II), Co(II), Ni(II), Cd(II), and Fe(II)/Me(II) onto hematite. Water Resour. 2003, 37(17), 4135–4142.
  • Juang, R.-S.; Chung, J.-Y. Equilibrium sorption of heavy metals and phosphate from single and binary-sorbate solutions on goethite. J. Coll. Interf. Sci. 2004, 275(1), 53–60.
  • Rao, K.S.; Mohapatra, M.; Anand, S.; Venkateswarlu, P. Review on cadmium removal from aqueous solutions. Int. J. Environ. Sci. Technol. 2010, 2(7), 81–103.
  • Agrawal, A.; Sahu, K. Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue. J. Hazard. Mater. 2006, 137(2), 915–924.
  • Ponder, S.M.; Darab, J.G.; Bucher, J.; Caulder, D.; Craig, I.; Davis, L.; Edelstein, N.; Lukens, W.; Nitsche, H.; Rao, L.F.; Shuh, D.K.; Mallouk, T.E. Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem. Mater. 2001, 13(2), 479–486.
  • Lien, H.-L.; Zhang, W.-X.; Nanoscale iron particles for complete reduction of chlorinated ethenes. Coll. Surf. A. 2001, 191(1–3), 97–105.
  • Christophi, C.A.; Axe, L. Competition of Cd, Cu, and Pb adsorption on goethite. J. Environ. Eng. 2000, 126(1), 66–74.
  • Chen, J.L.; Al-Abed, S.R.; Ryan, J.A.; Li, Z. Effects of pH on dechlorination of trichloroethylene by zero-valent iron. J. Hazard. Mater. 2001, 83(3), 243–254.
  • Rao, P.S.C.; Jawitz, J.W. Comment on ‘Steady state mass transfer from single component dense nonaqueous phase liquids in uniform flow fields’ by T.C. Sale and D.B. McWhorter. Water Resour. Res. 2003, 39(3), 1068–1070.
  • Matheson, L.J.; Tratnyek, P.G. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 1994, 28(12), 2045–2053.
  • Roberts, A.L.; Totten, L.A.; Arnold, W.A.; Burris, D.R.; Campbell, T.J. Reductive elimination of chlorinated ethylenes by zero-valent metals. Environ. Sci. Technol. 1996, 30(8), 2654–2659.
  • Kang, K.C.; Kim, S.S.; Choi, J.W.; Kwon, S.H. Sorption of Cu2+ and Cd2+ onto acid and base pretreated granular activated carbon and activated carbon fiber samples. J. Ind. Eng. Chem. 2008, 14(1), 131–135.
  • Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I: Solids. J. Am. Chem. Soc. 1917, 38(9), 1848–1906.
  • Jakcok, M.J.; Parfitt, G.D. Chemistry of Interfaces. Taylor & Francis: New York, NY, 1986.
  • Benjamin, M.M.; Leckie, J.O. Competitive adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. J. Coll. Interf. Sci. 1981b, 83(2), 410–419.
  • Benjamin, M.M.; Leckie, J.O. Multiple-site adsorption of Cd, Cu, Zn and Pb on amorphous iron oxide. J. Coll. Interf. Sci. 1981a, 79(1), 209–221.
  • Mohapatra, M.; Mohapatra, L.; Singh, P.; Anand. S.; Mishra, B.K. A comparative study on Pb (II), Cd(II), Cu(II), Co(II) adsorption from single and binary aqueous solutions on additive assisted nano-structured goethite. Int. J. Environ. Sci. Technol. 2010, 2(8), 89–103.
  • Li. S.; Wang. W.; Yan. W.; Zhang, W.X. Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: a field demonstration. Environ. Sci. Proc. Impact. 2014, 16, 524–535.
  • Kim, H.-M.; Oh, B-T.; Removal of Pb (II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chem. Eng. J. 2013, 11, 54–60.
  • Pehlivan, E.; Altun, T. The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Dowex 50 W synthetic resin. J. Hazard. Mater. 2006, 134(1–3), 149–156.
  • Pehlivan, E.; Arslan, G. Removal of metal ions using lignite in aqueous solution—Low cost biosorbents. Fuel Proc. Technol. 2007, 88, 99–106.
  • Tabakci, M.; YilmazM. Sorption characteristics of Cu (II) ions onto silica gel-immobilized calix [4]arene polymer in aqueous solutions: Batch and column studies. J. Hazard. Mater. 2008, 151, 331–338.
  • Ozmen, M.; Can, K.; Arslan, G.; Tor A.; Cengeloglu, Y.; Ersoz, M. Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles. Desalination 2010, 254, 162–169.
  • Karabelli, D.; Unal, S.; Shahwan, T.; Eroglu, A. Preparation and characterization of alumina-supported iron nanoparticles and its application for the removal of aqueous Cu2+ ions. Chem. Eng. J. 2011, 168, 979–984.
  • Unuabonah, E.I.; Adebowale, K.O.; Olu-Owolabi. B.I.; Yang, L.Z.; Kong, L.X. Adsorption of Pb (II) and Cd (II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy 2008, 93, 1–9.
  • Kumar, P.S.; Ramakrishnan, K.; Kirupha, S.D.; Sivanesan, S. Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk. Braz. J. Chem. Eng. 2010, 27, 347–355.
  • Goel, J.; Kadirvelu, K.; Rajagopal, C.; Garg, K. Removal of lead (II) by adsorption using treated granular activated carbon: Batch and column studies. J. Hazard.Mater. 2005, 125(1–3), 211–220.
  • Salih, H.; Sorial, G.; Patterson, C.; Sinha, R.; Krishnan, R. Removal of trichloroethylene by activated carbon in the presence and absence of TiO2 nanoparticles. Water, Air, Soil Pollut. 2012, 223, 2837–2847.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.