Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 10
191
Views
7
CrossRef citations to date
0
Altmetric
ARTICLES

Biotechnologically obtained nanocomposites: A practical application for photodegradation of Safranin-T under UV-Vis and solar light

, , , &
Pages 996-1010 | Received 09 Feb 2015, Published online: 29 Jun 2015

References

  • Hu, C.; Wang, Y.Z. Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater. Chemosphere 1999, 39, 2107–2115.
  • El-Kemary, M.; Abdel-Moneam, Y.; Madkour, M.; El-Mehasseb, I. Enhanced photocatalytic degradation of Safranin-O by heterogeneous nanoparticles for environmental applications. J. Lumin. 2011, 131, 570–576.
  • Tang, W.Z.; An, H. Uv/TiO2 Photocatalytic oxidation of commercial dyes in aqueous-solutions. Chemosphere 1995, 31, 4157–4170.
  • Sobana, N.; Muruganadham, M.; Swaminathan, M. Nano-Ag particles doped TiO2 for efficient photodegradation of Direct azo dyes. J. Mol. Catal. A-Chem. 2006, 258, 124–132.
  • Janus, M.; Morawski, A.W. New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes, decomposition. Appl. Catal. B-Environ. 2007, 75, 118–123.
  • Chebli, D.; Fourcade, F.; Brosillon, S.; Nacef, S.; Amrane, A. Integration of photocatalysis and biological treatment for azo dye removal - application to AR183. Environ. Technol. 2011, 32, 507–514.
  • Rauf, M.A.; Ashraf, S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 2009, 151, 10–18.
  • Mahmoodi, N.M.; Arami, M.; Limaee, N.Y.; Tabrizi, N.S. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J. Colloid. Interf. Sci. 2006, 295, 159–164.
  • Gupta, V.K.; Jain, R.; Mittal, A.; Mathur, M.; Sikarwar, S. Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J. Coll. Interf. Sci. 2007, 309, 464–469.
  • Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C: Photochem. Rev. 2012, 13, 169–189.
  • Yawalkar, A.A.; Bhatkhande, D.S.; Pangarkar, V.G.; Beenackers, A.A.C.M. Solar-assisted photochemical and photocatalytic degradation of phenol. J. Chem. Technol. Biot. 2001, 76, 363–370.
  • Franco, A.; Neves, M.C.; Carrott, M.M.L.R.; Mendonca, M.H.; Pereira, M.I.; Monteiro, O.C. Photocatalytic decolorization of methylene blue in the presence of TiO(2)/ZnS nanocomposites. J. Haz. Mat. 2009, 161, 545–550.
  • Nunes, M.R.; Monteiro, O.C.; Castro, A.L.; Vasconcelos, D.A.; Silvestre, A.J. A new chemical route to synthesise TM-doped (TM = Co, Fe) TiO2 nanoparticles. Eur. J. Inorg. Chem. 2008, 961–965.
  • Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.
  • Neves, M.C.; Monteiro, O.C.; Hempelmann, R.; Silva, A.M.S.; Trindade, T. From single-molecule precursors to coupled Ag2S/TiO2 nanocomposites. Eur. J. Inorg. Chem. 2008, 4380–4386.
  • Hu, J.-S.; Ren, L.-L.; Guo, Y.-G.; Liang, H.-P.; Cao, A.-M.; Wan, L.-J.; Bai, C.-L. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angew. Chem. 2005, 117, 1295–1299.
  • da Costa, J.P.; Girao, A.V.; Lourenco, J.P.; Monteiro, O.C.; Trindade, T.; Costa, M.C. Synthesis of nanocrystalline ZnS using biologically generated sulfide. Hydromet. 2012, 117, 57–63.
  • Zaghbani, N.; Hafiane, A.; Dhahbi, M. Removal of Safranin T from wastewater using micellar enhanced ultrafiltration. Desalination 2008, 222, 348–356.
  • Saha, I.; Bhattacharyya, J.; Kumar, G.S. Thermodynamic investigations of ligand–protein interactions: Binding of the phenazinium dyes phenosafranin and safranin O with human serum albumin. J. Chem. Thermodyn. 2013, 56, 114–122.
  • Gupta, V.K.; Jain, R.; Saleh, T.A.; Nayak, A.; Malathi, S.; Agarwal, S. Equilibrium and thermodynamic studies on the removal and recovery of Safranine-T dye from industrial effluents. Separ. Sci. Technol. 2011, 46, 839–846.
  • Ma, L.; Dong, F.; Bian, L. Enhanced photocatalytic degradation of Rutile TiO2 by analysis of the surface potential and fluorescence. In 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), Chengdu, China; Chou, K.C, Ed., 2010, 1–4.
  • Libanori, R.; Giraldi, T.R.; Longo, E.; Leite, E.R.; Ribeiro, C. Effect of TiO2 surface modification in Rhodamine B photodegradation. J. Sol-Gel Sci. Techn. 2009, 49, 95–100.
  • MalvernInstruments. Zeta potential characterization of concentrated titanium dioxide slurries with the ZEN1010 High Concentration Cell. In Zetasizer Nano application note MRK1301-0. 2009.
  • Riddick, T.M. Control of colloid stability through Zeta potential. Zeta-Meter Inc.: New York, 1968.
  • Bullard, J.W.; Cima, M.J. Orientation dependence of the isoelectric point of TiO2 (rutile) surfaces. Langmuir. 2006, 22, 10264–10271.
  • Svecova, L.; Cremel, S.; Sirguey, C.; Simonnot, M.O.; Sardin, M.; Dossot, M.; Mercier-Bion, F. Comparison between batch and column experiments to determine the surface charge properties of rutile TiO2 powder. J. Coll. Interf. Sci. 2008, 325, 363–370.
  • Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 1940, 62, 1723–1732.
  • Sharma, P.; Tomar, R. Sorption behaviour of nanocrystalline MOR type zeolite for Th(IV) and Eu(III) removal from aqueous waste by batch treatment. J. Coll. Interf. Sci. 2011, 362, 144–156.
  • Zhou, X.T.; Ji, H.B.; Huang, X.J. Photocatalytic degradation of Methyl Orange over metalloporphyrins supported on TiO2 Degussa P25. Molecules 2012, 17, 1149–1158.
  • ISO. Determination of the specific surface area of solids by gas adsorption — BET method. Vernier, Geneva, Switzerland: International Organization for Standardization. 2010, 30.
  • Reisinger, M. Personal communication, AEROXIDE® TiO2 P 25. Faro. 2013.
  • Bumajdad, A.; Madkour, M.; Abdel-Moneam, Y.; El-Kemary, M. Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores. J. Mater. Sci. 2014, 49, 1743–1754.
  • Jia, H.M.; Xu, H.; Hu, Y.; Tang, Y.W.; Zhang, L.Z. TiO2@CdS core-shell nanorods films: Fabrication and dramatically enhanced photoelectrochemical properties. Electrochem. Commun. 2007, 9, 354–360.
  • Wu, J.C.S.; Chen, C.-H. A visible-light response vanadium-doped titania nanocatalyst by sol–gel method. J. Photochem. Photobiol. A: Chem. 2004, 163, 509–515.
  • Yang, L.; Zhang, Y.; Ruan, W.; Zhao, B.; Xu, W.; Lombardi, J.R. Improved surface-enhanced Raman scattering properties of TiO2 nanoparticles by Zn dopant. J. Raman Spectrosc. 2010, 41, 721–726.
  • Ai, Z.; Zhu, L.; Lee, S.; Zhang, L. NO treated TiO2 as an efficient visible light photocatalyst for NO removal. J. Haz. Mat. 2011, 192, 361–367.
  • Vijayabalan, A.; Selvam, K.; Velmurugan, R.; Swaminathan, M. Photocatalytic activity of surface fluorinated TiO2-P25 in the degradation of Reactive Orange 4. J. Haz. Mat. 2009, 172, 914–921.
  • Sharma, M.; Jain, T.; Singh, S.; Pandey, O.P. Photocatalytic degradation of organic dyes under UV–Visible light using capped ZnS nanoparticles. Sol. Energy 2012, 86, 626–633.
  • Chen, Y.; Yin, R.H.; Wu, Q.S. Solvothermal synthesis of well-disperse ZnS nanorods with efficient photocatalytic properties. J. Nanomater. 2012, 2012, Article ID 560310.
  • Kisch, H. Semiconductor photocatalysis for organic synthesis. In Advances in Photochemistry; Neckers, D.C.; von Bünau, G; Jenks, W.S., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2007, 93–143.
  • Goswami, N.; Saha, R.; Pal, S.K. Protein-assisted synthesis route of metal nanoparticles: exploration of key chemistry of the biomolecule. J. Nanopart. Res. 2011, 13, 5485–5495.
  • Zhu, L.; Lim, C.S.; Meng, Z.D.; Choi, J.G.; Park, C.Y.; Ghost, T.; Cho, K.Y.; Oh, W.C. Hydrothermal synthesis and highly visible light-induced photocatalytic activity of acid functionalized MWCNTs as support for ZnS-photosensitized TiO2 catalysts. J. Ceram. Proc. Res. 2012, 13, 283–290.
  • Zhao, S.; Li, J.Z.; Wang, L.; Wang, X.H. Degradation of Rhodamine B and Safranin-T by MoO(3):CeO(2) nanofibers and air using a continuous mode. Clean 2010, 38, 268–274.
  • Janaki, V.; Oh, B.-T.; Shanthi, K.; Lee, K.-J.; Ramasamy, A.K.; Kamala-Kannan, S. Efficiency of various semiconductor catalysts for photodegradation of Safranin-T. Res. Chem. Interm. 2012, 7, 1431–1442.
  • Senthilkumaar, S.; Porkodi, K. Heterogeneous photocatalytic decomposition of Crystal Violet in UV-illuminated sol-gel derived nanocrystalline TiO2 suspensions. J. Colloid. Interf. Sci. 2005, 288, 184–189.
  • Toor, A.P.; Verma, A.; Jotshi, C.K.; Bajpai, P.K.; Singh, V. Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor. Dyes Pigments 2006, 68, 53–60.
  • Zhu, H.Y.; Jiang, R.; Xiao, L.; Chang, Y.H.; Guan, Y.J.; Li, X.D.; Zeng, G.M. Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. J. Haz. Mat. 2009, 169, 933–940.
  • Erdemoglu, S.; Aksu, S.K.; Sayilkan, F.; Izgi, B.; Asilturk, M.; Sayilkan, H.; Frimmel, F.; Gucer, S. Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC-MS. J. Haz. Mat. 2008, 155, 469–476.
  • Sajjad, A.K.L.; Shamaila, S.; Tian, B.Z.; Chen, F.; Zhang, J.L. Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst. J. Haz. Mat. 2010, 177, 781–791.
  • Rauf, M.A.; Meetani, M.A.; Hisaindee, S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 2011, 276, 13–27.
  • Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027.
  • Kaur, S.; Singh, V. TiO2 mediated photocatalytic degradation studies of Reactive Red 198 by UV irradiation. J. Haz. Mat. 2007, 141, 230–236.
  • Gude, K.; Gun'ko, V.M.; Blitz, J.R. Adsorption and photocatalytic decomposition of methylene blue on surface modified silica and silica-titania. Coll. Surf. A 2008, 325, 17–20.
  • Behnajady, M.A.; Modirshahla, N.; Daneshvar, N.; Rabbani, M. Photocatalytic degradation of CI Acid Red 27 by immobilized ZnO on glass plates in continuous-mode. J. Haz. Mat. 2007, 140, 257–263.
  • Rauf, M.A.; Bukallah, S.B.; Hamadi, A.; Sulaiman, A.; Hammadi, F. The effect of operational parameters on the photoinduced decoloration of dyes using a hybrid catalyst V2O5/TiO2. Chem. Eng. J. 2007, 129, 167–172.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.