Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 10
208
Views
7
CrossRef citations to date
0
Altmetric
ARTICLES

A novel cellulose-dioctyl phthate-baker's yeast biosorbent for removal of Co(II), Cu(II), Cd(II), Hg(II) and Pb(II)

, , , &
Pages 1072-1081 | Received 27 Oct 2014, Published online: 29 Jun 2015

References

  • Huang, J.; Gu, Y. Self-assembly of various guest substrates in natural cellulose substances to functional nanostructured materials. Curr. Opin. Coll. Interf. Sci. 2011, 16, 470–481.
  • O'Connell, D.W.; Birkinshaw, C.; O'Dwyer, T.F. Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresour. Technol. 2008, 99, 6709–6724.
  • Ishii, D.; Saito, T.; Isogai, A. Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 2011, 12, 548–450.
  • Crini, G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progr. Polym. Sci. 2005, 30, 3870.
  • Chang, C.; Zhang, L. Cellulose-based hydrogels: A review. Present status and application prospects. Carbohydr. Polym. 2011, 84, 40–53.
  • Kamel, S.; Hassan, E.M.; El-Sakhawy, M. Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) ions. J. Appl. Polym. Sci. 2006, 100, 329–334.
  • Low, K.S.; Lee, C.K.; Mak, S.M. Sorption of copper and lead by citric acid modified wood. Wood Sci. Technol. 2004, 38, 629–640.
  • Aoki, N.; Fukushima, K.; Kurakata, H.; Sakamoto, M.; Furuhata, M. 6-Deoxy-6-mercapto-cellulose and its S-substituted derivatives as sorbents for metal ions. React. Funct. Polym. 1999, 42, 223–233.
  • Maekawa, E.; Koshijima, T. Preparation and characterisation of hydroxamic acid derivatives and its metal complexes derived from cellulose. J. Appl. Polym. Sci. 1990, 40, 1601–1613.
  • Saliba, R.; Gauthier, H.; Gauthier, R. Adsorption of heavy metal ions on virgin and chemically-modified lignocellulosic materials. Adsorp. Sci. Technol. 2005, 23, 313–322.
  • Bhattacharya, A.; Misra, B.N. Grafting: a versatile means to modify polymers: techniques, factors and applications. Progr. Polym. Sci. 2004, 29, 767–814.
  • Abdel-Aal, S.E.; Gad, Y.; Dessouki, A.M. The use of wood pulp and radiation modified starch in wastewater treatment. J. Appl. Polym. Sci. 2006, 99, 2460–2469.
  • Hashem, A. Amidoximated sunflower stalks (ASFS) as a new adsorbent for removal of Cu(II) from aqueous solution. Polym. Plast. Technol. Eng. 2006, 45, 35–42.
  • Matsuto, T.; Jung, C.H.; Tanaka, N. Material and heavy metal balance in a recycling facility for home electrical appliances. Waste Manag. 2004, 24, 425–436.
  • Anirudhan, T.S.; Nima, J.; Sandeep, S.; Ratheesh, V.R.N. Development of an amino functionalized glycidylmethacrylate-grafted-titanium dioxide densified cellulose for the adsorptive removal of arsenic(V) from aqueous solutions. Chem. Eng. J. 2012, 209, 362–371.
  • Yan, G.; Viraraghavan, T. Effect of pretreatment on the bioadsorption of heavy metals on mucor rouxii. Water SA. 2000, 26, 119–123.
  • Yang, R.; Aubrecht, K.B.; Ma, H.; Wang, R.; Grubbs, R.B.; Hsiao, B.S.; Chu, B. Thiol-modified cellulose nanofibrous composite membranes for chromium (VI) and lead (II) adsorption. Polymer 2014, 55, 1167–1176.
  • Hajeeth, T.; Vijayalakshmi, K.; Gomathib, T.; Sudha, P.N. Removal of Cu(II) and Ni(II) using cellulose extracted from sisal fiberand cellulose-g-acrylic acid copolymer. Inter. J. Biol. Macromolecul. 2013, 62, 59–65.
  • Sun, X.; Yang, L.; Li, Q.; Zhao, J.; Li, X.; Wang, X.; Liu, H. Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): Synthesis and adsorption studies. Chem. Eng. J. 2014, 241, 175–183.
  • Filho, E.C.S.; Lima, L.C.B.; Silva, F.C.; Sousa, K.S.; Fonseca, M.G.; Santana, S.A.A. Immobilization of ethylene sulfide in aminated cellulose for removal of the divalent cations. Carbohydr. Polym. 2013, 92, 1203–1210.
  • Monier, M.; Abdel-Latif, D.A. Synthesis and characterization of ion-imprinted resin based on carboxymethyl cellulose for selective removal of UO22+. Carbohydr. Polym. 2013, 97, 743–752.
  • Junior, O.K.; Gurgel, L.V.A.; Gil, L.F. Removal of Ca(II) and Mg(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse grafted with EDTA dianhydride (EDTAD). Carbohydr. Polym. 2010, 79, 184–191.
  • Zaki, A.A.; El-Zakla, T.; Abed El Geleel, M. Modeling kinetics and thermodynamics of Cs+ and Eu3+ removal from waste solutions using modified cellulose acetate membranes. J. Membr. Sci. 2012. 401– 402, 1–12.
  • Ju, J.; He, G.; Duan, Z.; Zhao, W.; Liu, Y.; Zhang, L.; Li, Y. Improvement of bilirubin adsorption capacity of cellulose cetate/polyethyleneimine membrane using sodium deoxycholate. Biochem. Eng. J. 2013, 79, 144–152.
  • Liang, Z.P.; Feng, Y.Q.; Liang, Z.Y.; Meng, S.X. Adsorption of urea nitrogen onto chitosan coated dialdehyde cellulose under biocatalysis of immobilized urease: Equilibrium and kinetics. Biochem. Eng. J. 2005, 24, 65–72.
  • Pérez Marín, A.B.; Ortuño, J.F.; Aguilar, M.I.; Meseguer, V.F.; Sáez, J.; Lloréns, M. Use of chemical modification to determine the binding of Cd(II), Zn(II) and Cr(III) ions by orange waste. Biochem. Eng. J. 2010, 53, 2–6.
  • Li, R.; Dou, J.; Jiang, Q.; Li, J.; Xie, Z.; Liang, J.; Ren, X. Preparation and antimicrobial activity of β-cyclodextrin derivative copolymers/cellulose acetate nanofibers. Chem. Eng. J. 2014, 248, 264–272.
  • Sun, X.; Yang, L.; Li, Q.; Zhao, J.; Li, X.; Wang, X.; Liu, H. Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): Synthesis and adsorption studies. Chem. Eng. J. 2014, 241, 175–183.
  • Oliveira, T.F.D.; Chedeville, O.; Fauduet, H.; Cagnon, B. Use of ozone/activated carbon coupling to remove diethyl phthalate from water: influence of activated carbon textural and chemical properties. Desalination 2011, 276, 359–365.
  • Mullen, M.D.; Wolf, D.C.; Fems, F.G.; Beveridge, T.J.; Flemming, C.A.; Bailey, G.W. Bacterial sorption of heavy metals. App. Environ. Microbiol. 1989, 54, 143–149.
  • Mahmoud, M.E.; Yakout, A.A.; Abdel-Aal, H.; Osman, M.M. Enhanced biosorptive removal of cadmium from aqueous solutions by silicon dioxide nano-powder, heat inactivated and immobilized Aspergillus ustus. Desalination 2011, 279, 291–197.
  • Mahmoud, M.E.; Yakout, A.A.; Osman, M.M. Dowex anion exchanger-loaded-baker's yeast as bi-functionalized biosorbents for selective extraction of anionic and cationic mercury (II) species. J. Hazard. Mater. 2009, 164, 1036–1044.
  • Khan, H.; Ahmed, J.; Bhanger, M.I. A simple spectrophometric determination of trace level mercury using 1,5-diphenylthiocarbazone solubilized in micelle. Anal. Sci. 2005, 21, 507–512.
  • Xu, M.; Zhanga, Y.; Zhangb, Z.; Shenb, Y.; Zhao, M.; Pan, G. Study on the adsorption of Ca2+, Cd2+ and Pb2+ by magnetic Fe3O4 yeast treated with EDTA dianhydride. Chem. Eng. J. 2011, 168, 737–745.
  • Mahmoud, M.E.; Yakout, A.A.; Abdel-Aal, H.; Osman, M.M. Immobilization of Fusarium verticillioides fungus on nano-silica (NSi–Fus): A novel and efficient biosorbent for water treatment and solid phase extraction of Mg(II) and Ca(II). Bioresour. Technol. 2013, 134, 324–330.
  • Mahmoud, M.E.; Yakout, A.A.; Abdel-Aal, H.; Osman, M.M. High performance SiO2-nanoparticles-immobilized-Penicillium funiculosum for bioaccumulation and solid phase extraction of lead. Bioresour. Technol. 2012, 106, 125–132.
  • Mahmoud, M.E.; Abdelwahab, M.S.; Fathallah, E.M. Design of novel nano-sorbents based on nano magnetic iron oxide-bound-nano silicon oxide-immobilized-triethylenetetramine for implementation in water treatment of heavy metals. Chem. Eng. J. 2013, 223, 318–327.
  • Mahmoud, M.E.; Osman, M.M.; Ahmed, S.B.; Abdel-Fattah, T.M. Improved adsorptive removal of cadmium from water by hybrid chemically and biologically carbonaceous sorbents. Chem. Eng. J. 2011, 175, 84–94.
  • Mahmoud, M.E.; Osman, M.M.; Ahmed, S.B.; Abdel-Fattah, T.M. Chemically and biologically modified activated carbon sorbents for the removal of lead ions from aqueous media. J. Environ. Sci. Health A 2012, 47, 130–141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.