Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 11
360
Views
41
CrossRef citations to date
0
Altmetric
ARTICLES

Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacae B2-DHA

, , , , , , , , & show all
Pages 1136-1147 | Received 26 Feb 2015, Published online: 20 Jul 2015

References

  • Ortegel, J.W.; Staren, E.D.; Faber, L.P.; Warren, W.H.; Braun, D.P. Modulation of tumor-infiltrating lymphocyte cytolytic activity against human non-small cell lung cancer. Lung Cancer 2002, 36, 17–25.
  • Viti, C.; Pace, A.; Giovannetti, L. Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr. Microbiol. 2003, 46, 1–5.
  • Chourey, K.; Thompson, M.R.; Morrell-Falvey, J.; VerBerkmoes, N.C.; Brown, S.D.; Shah, M.; Zhou, J.; Doktycz, M.; Hettich, R.L.; Thompson, D.K. Global molecular and morphological effects of 24-hour chromium(vi) exposure on Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 2006, 72, 6331–6344.
  • The Guardian, Sunday 7 July 2013. Available at http://www.theguardian.com/world/2013/jul/07/bangladesh-tanneries-human-rights-violations (accessed Nov 2013).
  • Avudainayagam, S.; Megharaj, M.; Owens, G.; Kookana, R.S.; Chittleborough, D.; Naidu, R. Chemistry of chromium in soils with emphasis on tannery waste sites. Rev. Environ. Contam. Toxicol. 2003, 178, 53–91.
  • Offenbacher, E.G.; Pi-Sunyer, F.X. Chromium in human nutrition. Ann. Rev. Nutr. 1988, 8, 543–563.
  • Jeyasingh, J.; Philip, L. Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions. J. Hazard. Mater. 2005, 118, 113–120.
  • Camargo, F.A.O.; Bento, F.M.; Okeke, B.C.; Frankenberger, W.T. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J. Environ. Qual. 2003, 32, 1228–1233.
  • Zafar, S.; Aqil, F.; Ahmad, I. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour. Technol. 2007, 98, 2557–2561.
  • Congeevaram, S.; Dhanarani, S.; Park, J.; Dexilin, M.; Thamaraiselvi, K. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard. Mater. 2007, 146, 270–277.
  • Alvarez, A.H.; Moreno-Sanchez, R.; Cervantes, C. Chromate efflux by means of the chrA chromate resistance protein from Pseudomonas aeruginosa. J. Bacteriol. 1999, 181, 7398–7400.
  • Panda, J.; Sarkar, P. Bioremediation of chromium by novel strains Enterobacter aerogenes T2 and Acinetobacter sp. PD 12 S2. Environ. Sci. Pollut. Res. Int. 2012, 19, 1809–1817.
  • Komori, K.; Rivas, A.; Toda, K.; Ohtake, H. A method for removal of toxic chromium using dialysis-sac cultures of a chromate reducing strain of Enterobacter cloacae. Appl. Microbiol. Biotechnol. 1990, 33, 117–119.
  • Yamamoto, K.; Kato, J.; Yamo, T.; Ohtake, J. Kinetics and modeling of hexavalent chromium reduction in Enterobacter cloacae. Biotechnol. Bioeng. 1993, 41, 129–133.
  • Clark, D.P. Chromate reductase activity of Enterobacter aerogenes is induced by nitrite. FEMS Microbiol. Lett. 1994, 122, 233–238.
  • Rege, M.A.; Peterson, J.N.; Johnstone, D.L.; Turick, C.E.; Yonge, D.R.; Apel, W.A. Bacterial reduction of hexavalent chromium by Enterobacter cloacae strain HO1 grown on sucrose. Biotechnol. Lett. 1997, 19, 691–694.
  • Pattanapipitpaisal, P.; Brown, N.L.; Macaskie, L.E. Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site. Appl. Microbiol. Biotechnol. 2001, 57, 257–261.
  • Michel, C.; Brugma, M.; Aubert, C.; Bernadac, A.; Bruschi, M. Enzymatic reduction of chromate: Comparative studies using sulfate-reducing bacteria. Appl. Microbiol. Biotechnol. 2001, 55, 95–100.
  • Shen, H.; Wang, Y. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl. Environ. Microbiol. 1993, 59, 3771–3777.
  • Guha, H.; Jayachandran, K.; Maurrasse, F. Kinetics of chromium (VI) reduction by a type strain Shewanella alga under different growth conditions. Environ. Pollut. 2001, 115, 209–218.
  • Thacker, U.; Parikh, R.; Shouche, Y.; Madamwar, D. Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites. Bioresour. Technol. 2007, 98, 1541–1547.
  • de Crécy, E.; Metzgar, D.; Allen, C.; Pénicaud, M.; Lyons, B.; Hansen, C.J.; de Crécy-Lagard, V. Development of a novel continuous culture device for experimental evolution of bacterial populations. Appl. Microbiol. Biotechnol. 2007, 77, 489–496.
  • de Crécy, E.; Jaronski, S.; Lyons, B.; Lyouns, T.J.; Keyhani, N.O. Directed evolution of a filamentous fungus for thermo tolerance. BMC Biotechnol. 2009, 9, 74.
  • Rahman, A.; Nahar, N.; Nawani, N.N.; Jass, J.; Desale, P.; Kapadnis, B.P.; Hossain, K.; Saha, A.K.; Ghosh, S.; Olsson, B.; Mandal, A. Isolation of a Lysinibacillus strain B1-CDA showing potentials for arsenic bioremediation. J. Environ. Sci. Health Pt. A 2014, 49, 1349–1360.
  • Vickerman, J.C.; Briggs, D. TOF-SIMS Surface Analysis by Mass Spectrometry. IM Publications and Surface Spectra Limited: West Sussex, 2001.
  • Norrman, K.; Krebs, F.C. Lifetimes of organic photovoltaics: Using TOF-SIMS and 18O2 isotopic labelling to characterise chemical degradation mechanisms. Sol. Energy Mater. Sol. Cells 2006, 90, 213–227.
  • Stefánsson, A.; Gunnarsson, I.; Giroud, N. New methods for the direct determination of dissolved inorganic, organic and total carbon in natural waters by Reagent-Free Ion Chromatography and inductively coupled plasma atomic emission spectrometry. Anal. Chim. Acta 2007, 582, 69–74.
  • Schwedt, G. The Essential Guide to Analytical Chemistry. (Brooks Haderlie, trans.). Wiley: Chichester, UK. ( Original Work Published 1943), 1997; 16–17.
  • Xu, W.; Sandford, R.; Worsfold, P.; Carlton, A.; Hanrahan, G. Flow Injection Techniques in Aquatic Environmental Analysis: Recent Applications and Technological Advances. Critical Reviews in Analytical Chemistry. 2005, 35, 237–246.
  • Mergeay, M. Heavy metal resistances in microbial ecosystems. In Molecular Microbial Ecology Manual, A.D.L. Akkermans, J.D. Elsas, F.J. de Bruin, Eds.; Kluwer Academic Publishers: Dordrecht, 1995; 6.1.7/1–6.1.7/17.
  • Villegas-Torres, M.F.; Bedoya-Reina, O.C.; Salazar, C.; Vives-Florez, M.J.; Dussan, J. Horizontal arsC gene transfer among microorganisms isolated from arsenic polluted soil. Int. Biodeter. Biodegradat. 2011, 65, 147–152.
  • Eichorst, S.A.; Breznak, J.A.; Schmidt, T.M. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the Phylum Acidobacteria. Appl. Environ. Microbiol. 2007, 73, 2708–2717.
  • Krieg, N.R. Bergey's manual of systematic bacteriology, vol. 1, G. Garrity, D.R. Boone, R.W. Castenholz, Eds.; Williams and Wilkins: Baltimore, MD, 1984; 722.
  • Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425.
  • Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791.
  • Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120.
  • Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729.
  • Ammann, A.A. Inductively coupled plasma mass spectrometry (ICP MS): A versatile tool. J. Mass Spectrom. 2007, 42, 419–427.
  • Kollmer, F. Cluster primary ion bombardment of organic materials. Appl. Surf. Sci. 2004, 231–232, 153–158.
  • Touboul, D.; Kollmer, F.; Niehuis, E.; Brunelle, A.; Laprevote, O. Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. J. Am. Chem. Soc. 2005, 16, 1608–1618.
  • Sodhi, R.N.S. Time-of-flight secondary ion mass spectrometry (TOF-SIMS): versatility in chemical and imaging surface analysis. Analyst 2004, 129, 483–487.
  • Wang, P.C.; Mori, T.; Komori, K; Sasatsu, M; Toda, K.; Ohtake, H. Isolation and characterization of an Enterobacter cloacae strain that redqces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbiol. 1989, 55, 1665–1669.
  • Wang, P.C.; Mori, T.; Toda, K.; Ohtake, H. Membrane associated chromate reductase activity from Enterobacter cloacae. J. Bacteriol. 1990, 172, 1670–1672.
  • Cervantes, C.; Campos-Garcia, J.; Devars, S.; Gutie´rrez-Corona, F.; Loza-Tavera, H.; Torres Guzma´n, J.C.; Moreno-Sa´nchez, R. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 2001, 25, 333–347.
  • Kirchman, D.L.; Malmstrom, R.R.; Cottrell, M.T. Control of bacterial growth by temperature and organic matter in the Western Arctic. Deep-Sea Res. II. 2005, 52, 3386–3395.
  • Doenmez, G.; Aksu, Z. Bioaccumulation of copper (II) and Nickel (II) by the non-adapted and adapted growing Candida sp. Water Res. 2001, 35, 1425–1434.
  • Weng, C.H.; Huang, C.P.; Sanders, P.F. Transport of Cr(VI) in soils contaminated with chromite ore processing residue (COPR). Pract. Period. Hazard. Toxic Radioact. Waste Manage. 2002, 6, 6–13.
  • Bopp, L.H.; Ehrlich, H.L. Chromate resistance and reduction in Pseudomonas florescens strain LB300. Arch. Microbiol. 1988, 150, 426–431.
  • Novick, A. Growth of bacteria. Ann. Rev. Microbiol. 1955, 9, 97–110.
  • Wang, Y.T.; Xiao, C. Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Res. 1995, 29, 2467–2474.
  • Megharaj, M.; Avudainayagam, S.; Naidu, R. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr. Microbiol. 2003, 47, 51–54.
  • Desai, C.; Jain, K.; Madamwar, D. Evaluation of in vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr(VI) polluted industrial landfill. Bioresour. Technol. 2008, 99, 6059–6069.
  • Vijayakumar, G.; Tamilarasan, R.; Dharmendra, M. K. Removal of Cd2þ ions from aqueous solution using live and dead Bacillus subtilis. Eng. Res. Bull. 2011, 15, 18–24.
  • Desale, P.; Kashyap, D.; Nawani, N.; Nahar, N.; Rahman, A.; Kapadnis, B.; Mandal, A. Biosorption of nickel by Lysinibacillus sp. BA2 native to bauxite mine. Ecotoxicol. Environ. Saf. 2014, 107. 260–268.
  • Nepple, B.B.; Flynn, I. Bachofen. Morphological changes in phototrophic bacteria induced bymetalloid oxyanions. Microbiol. Res. 1999, 154, 191–198.
  • Banerjee, S.; Datta, S.; Chattyopadhyay, D.; Sarkar, P. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J. Environ. Sci. Health Pt. A 2011, 46, 1736–1747.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.