Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 11
1,132
Views
56
CrossRef citations to date
0
Altmetric
ARTICLES

Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment

, , , , , , , & show all
Pages 1194-1204 | Received 24 Feb 2015, Published online: 20 Jul 2015

References

  • Gupta, V.K.; Al Hayat, M.; Singh, A.K.; Pal, M.K. Nano level detection of Cd(II) using poly (vinyl chloride) based membranes of Schiff bases. Anal. Chim. Acta 2009, 634, 36–43.
  • Ali, I. The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Sep. Purifn. Rev. 2010, 39, 95–171.
  • Chen, X.; Chen, G.; Chen, L.; Chen, Y.; Lehmann, J.; McBride, M.B.; Hay, A.G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol. 2011, 102, 8877–8884.
  • Xu, X.; Gao, X.; Zhao, L.; Wang, H.; Yu, H.; Gao, B. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ. Sci. Pollut. Res. 2013, 20, 358–368.
  • Inyang, M.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.R.; Pullammanappallil, P.; Cao, X. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol. 2012, 110, 50–56.
  • Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–23.
  • Uchimiya, M.; Lima, I.M.; Klasson, K.T.; Chang, S.C.; Wartelle, L.H.; Rodgers, J.E. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter derived biochars in water and soil. J. Agric. Food Chem. 2010, 58, 5538–5544.
  • Uchimiya, M.; Chang, S.; Klasson, K.T. Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J. Hazard. Mater. 2011, 190(1–3), 432–441.
  • Cui, Y.; Du, X.; Weng, L.; van Riemsdijk, W.H. Assessment of in situ immobilization of lead (Pb) and arsenic (As) in contaminated soils with phosphate and iron: solubility and bioaccessibility. Water Air Soil Pollut. 2010, 213, 95–104.
  • Khan, M.J.; Jones, D.L. Chemical and organic immobilization treatments for reducing phytoavailability of heavy metals in copper-mine tailings. J. Plant Nutr. Soil Sci. 2008, 171, 908–916.
  • Park, H.J.; Lee, B.H.; Lee, B.H. Calcination characteristics of waste cow bone and eggshell (in English abstract). J. Korean Solid Wastes Eng. Soc. 2001, 18, 731–736.
  • Hodson, M.E.; Valsami-Jones, E.; Cotter-Howells, J.D.; Dubbin, W.E.; Kemp, A.J.; Thornton, I. Effect of bone meal (calcium phosphate) amendments on metal release from contaminated soils—a leaching column study. Environ. Pollut. 2000, 112, 233–243.
  • Sneddon, I.R.; Orueetxebarria, M.; Hodson, M.E.; Schofield, P.F.; Valsami-Jones, E. Use of bone meal amendments to immobilise Pb, Zn and Cd in soil: a leaching column study. Environ. Pollut. 2006, 144, 816–825.
  • Girgis, B.S.; Kader, A.A.; Aly, A.N.H. Development of porosity in bone char during decoloirization of sugar syrup. Adsorp. Sci. Technol. 1997, 15(3), 277–287.
  • Walker, G.M.; Weatherley, L.R. Adsorption of dyes from aqueous solution – the effect of adsorbent pore size distribution and dye aggregation. Chem. Eng. J. 2001, 83, 201–206.
  • Cheung, C.W.; Porter, J.F.; Mckay, G. Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res. 2001, 35(3), 605–621.
  • Purevsuren, B.; Avid, B.; Gerelmaa, T.; Davaajav, Y.; Morgan, T.J.; Herod, A.A.; Kandiyoti, R. The characterisation of tar from the pyrolysis of animal bones. Fuel 2004, 83, 799–805.
  • Muirhead, N.; Mitton, R. Use of bone char as an adsorbent in preparation of water for dialysis. Am. Soc. Artif. Intern. Org. J. 1992, 38(3), 334–337.
  • Harter, R.D. Competitive sorption of cobalt, copper and nickel ions by a calcium-saturated soil. Soil Sci. Soc. Am. J. 1992, 56, 444–449.
  • Brummer, G.W.; Gerth, J.; Tiller, K.G. Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite I. Adsorption and diffusion of metals. J. Soil Sci. 1988, 39, 37–52.
  • MOE. The Korean Standard Test (KST) Methods for Soils (in Korean). Korean Ministry of Environment: Kyunggi, Korea, 2002.
  • Bohn, H.; McNeal, G.; O'connor, G. Soil Chemistry; John Wiley and Sons: New York, 1979.
  • Rao, J.R.; Viraraghavan, T. Biosorption of phenol from a aqueous solution by Aspergillus niger biomass. Bioresour. Technol. 2002, 85, 165–171.
  • Aksu, Z.; Gönen, F.; Demircan, Z. Biosorption of chromium (VI) ions by Mowital®B30H resin immobilized activated sludge in a packed bed: comparison with granular activated carbon. Proc. Biochem. 2002, 38, 175–186.
  • Thomas, H.C. Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 1944, 66, 1664–1666.
  • Seo, D.C.; Yu, K.; DeLaune, R.D. Comparison of monometal and multimetal adsorption in Mississippi River alluvial wetland sediment: Batch and column experiments. Chemosphere 2008, 73, 1757–1764.
  • Bagreev, A.; Bandosz, T.J.; Locke, D.C. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage derived fertilizer. Carbon 2001, 39, 1971–1979.
  • Gaskin, J.W.; Steiner, C.; Harris, K.; Das, C.; Bibens, B. Effect of low temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE 2008, 51, 2061–2069.
  • Shinogi, Y. Nutrient leaching from carbon products of sludge. ASAE/ CSAE Annual International Meeting. Ottawa, Ontario, Canada, Aug 1–4, 2004; American Society of Agricultural and Biological Engineering: 2004; No. 044063.
  • Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253.
  • Das, D.D.; Schnitzer, M.I.; Monreal, C.M.; Mayer, P. Chemical composition of acid–base fractions separated from bio-oil derived by fast pyrolysis of chicken manure. Bioresour. Technol. 2009, 100, 6524–6532.
  • Chen, B.; Zhou, D.; Zhu, L. Transitional adsorption and partition of nonpolar and polar aromaric contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 2008, 42, 5137–5143.
  • Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.K.; Yang, J.E.; Ok, Y.S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 2012, 118, 536–544.
  • Koutsopoulos, S. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J. Biomed. Mater. Res. 2000, 62, 600–612.
  • Lemos, A.F.; Rocha, J.H.G.; Quaresma, S.S.F.; Kannan, S.; Oktar, F.N.; Agathopoulos, S.; Ferreira, J.M.F. Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J. Eur. Ceram. Soc. 2006, 26, 3639–3646.
  • Rajesh, R.; Hariharasubramanian, A.; Ravichandran, Y.D. Chicken bone as a bioresource for the bioceramic (Hydroxyapatite). Phosphor. Sulf. Silic. Relat. Elem. 2012, 187, 914–925.
  • Wawro, D.; Pighinelli, L. Chitosan fibers modified with HAp/β- TCP nanoparticles. Int. J. Mol. Sci. 2011, 12, 7286–7300.
  • Ooi, C.Y.; Hamdi, M.; Ramesh, S. Properties of hydroxyapatite produced annealing of bovine bone. Ceram. Int. 2007, 33, 1171–1177.
  • Giles, C.H.; McEwan, T.H.; Nakhawa, S.N.; Smith, D. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 1960, 3973–3993.
  • Sposito, G. The Chemistry of Soils; Oxford University Press: New York, 1989.
  • Limousin, G.; Gaudet, J.P.; Charlet, L.; Szenknect, S.; Bathès, V.; Krimissa, M. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 2007, 22(2), 249–275.
  • Stumm, W. Chemistry of the Solid-Water Interface; John Wiley: New York, 1992.
  • Echeverría, J.C.; Morera, M.T.; Mazkiarán, C.; Garrido, J.J. Competitive sorption of heavy metal by soils. Isotherm and fractional factorial experiments. Environ. Pollut. 1998, 101, 275–284.
  • McBride, M.B. Environmental Chemistry of Soils; Oxford Univ. Press: New York, 1994.
  • Saha, U.K.; Taniguchi, S.; Sakurai, K. Simultaneous adsorption of cadmium, zinc, and lead on hydroxyalumium- and hydroxy aluminosilicate-montmorillinite complexes. Soil Sci. Soc. Am. J. 2002, 66, 117–128.
  • Serrano, S.; Garrido, F.; Campbell, C.G.; Garcia-Gonzalez, M.T. Competitive sorption of cadmium and lead in acid soils of Central Spain. Geoderma 2005, 124, 91–104.
  • Ding, W.; Dong, X.; Ime, I.M.; Gao, B.; Ma, L.Q. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 2014, 105, 68–74.
  • Li, Y.; Shao, J.; Wang, X.; Deng, Y.; Yang, H.; Chen, H. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energ. Fuel 2014, 28(8), 5119–5127.
  • Xue, Y.; Gao, B.; Yao, Y.; Inyang, M.; Zhang, M.; Zimmerman, A.R.; Ro, K.S. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem. Eng. J. 2012, 200–202, 673–680.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.